Problem 1 (7 points)

A producer faces the following production function:

$$y = f(x_1, x_2) = \min\{a \cdot x_1, x_2\}$$

where y is the output and x_1 and x_2 denote the input factors, a > 0. Assume prices $w_1 = 1$ and $w_2 = 2$.

a) Determine the cost function!

Now assume that the parameter a is uncertain. With probability q, we have $a = a_{\ell} = 3$, while with probability 1-q, $a = a_h = 4$. The firm determines the inputs after learning the realization of a.

b) Determine the cost lottery (with costs rather than payoffs) if 12 units of output should be produced.

Solution:

a) On optimal relation of the input factors is achieved if $ax_1 = x_2$. Then we have $y = ax_1 = x_2$ what gives

$$\begin{array}{rcl} x_1\left(y\right) &=& \frac{y}{a},\\ x_2\left(y\right) &=& y. \end{array}$$

Including this information into

$$c(y) = w_1 \cdot x_1(y) + w_2 \cdot x_2(y)$$

yields

$$c(y) = w_1 \cdot \frac{y}{a} + w_2 \cdot y.$$

Finally, we get

$$c\left(y\right) = \left(\frac{1}{a} + 2\right) \cdot y.$$

b) If parameter *a* is high, the costs are $c_h(12) = \left(\frac{1}{a_h} + 2\right) \cdot 12$. Otherwise, costs $c_\ell(12) = \left(\frac{1}{a_\ell} + 2\right) \cdot 12$ occur. Thus, the lottery is given by

$$L = [28, 27; q, 1 - q].$$

Problem 2 (4 points)

Consider two "goods" with points (-2, 2), (-1, 2) and (-3, -2) in a production set. Focusing on these input-output vectors, only, specify all efficiency relations that hold, or do not hold, between these points!

Solution:

(-2, 2) is not efficient since (-1, 2) is an improvement upon (-2, 2) since (-1, 2) > (-2, 2). Both (-2, 2) and (-1, 2) are improvements upon (-3, -2) because (-2, 2) > (-3, -2) and (-1, 2) > (-3, -2). (Indeed, we even have $(-2, 2) \gg (-3, -2)$ and $(-1, 2) \gg (-3, -2)$.) (Thus, only (-1, 2) is efficient.)

Problem 3 (10 points)

Consider the following figure in order to analyze the lottery $[95, 105; \frac{1}{2}, \frac{1}{2}]$:

(a) Right or wrong?

	true	false
The depicted vNM utility function exhibits risk aversion.		
The vNM utility function $u(x) = \sqrt{x}$ exhibits risk aversion.		
The vNM utility function $u(x) = 2x^2 + 4$ exhibits risk neutrality.		

(b) Assign I, II, III, and IV in the above figure to the concepts in the table!

	CE(L)	$E\left(L\right)$	$u\left(105\right)$	u(95)	$u\left(E\left(L\right) \right)$	$RP\left(L ight)$	$E_u(L)$
[I]							
[II]							
[III]							
[IV]							

(c) Assume the following vNM-utility function:

$$u(x) = ax^2 + c, \ a > 0$$

Determine the certainty equivalent of the lottery $\left[2,3;\frac{4}{5},\frac{1}{5}\right]!$

Solution:

(a) Right or wrong?

	true	false
The depicted vNM utility function exhibits risk aversion.		Х
The vNM utility function $u(x) = \sqrt{x}$ exhibits risk aversion.	×	
The vNM utility function $u(x) = 2x^2 + 4$ exhibits risk neutrality.		×

(b) Assign I, II, III, and IV in the above figure to the concepts in the table!

	CE(L)	$E\left(L\right)$	$u\left(105 ight)$	$u\left(95 ight)$	$u\left(E\left(L\right)\right)$	$RP\left(L ight)$	$E_u(L)$
[I]							×
[II]					×		
[III]		×					
[IV]	×						

(c) We may use v, given by $v(x) = x^2$, instead of u, since both are equivalent. From $v(CE) = E_v(L)$ and

$$E_v(L) = \frac{4}{5} \cdot 2^2 + \frac{1}{5} \cdot 3^2 = 5$$

we infer $CE^2 = v(CE) = 5$, hence $CE = \sqrt{5}$.

Problem 4 (12 points)

Consider the following decision problem without moves by nature!

- a) How many subtrees does this decision tree have? Give their initial nodes!
- b) Show that this decision situation exhibits imperfect recall!

- c) How many strategies can you find? Give two examples.
- d) Find the optimal strategies!

Solution:

- a) There are two subtrees starting at v_0 and v_1 .
- b) $I(v_0) = I(v_2)$, but $X(v_0) = (\{v_0, v_2\}) \neq (\{v_0, v_2\}, b, \{v_0, v_2\}) = X(v_2)$, which implies imperfect recall.
- c) We have 2^3 strategies (actions for the information sets $\{v_0, v_2\}, \{v_1\}, \{v_1\}, \{v_2\}, \{v_2\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_3\}, \{v_4\}, \{v_3, v_4\}, \{v_4\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_4\}, \{v_5, v_6\}, \{v_4\}, \{v_$
- d) The payoff 8 cannot be reached by pure strategies. Hence the optimal strategies yield the payoff 6. These are [a, d, a] and [a, d, b].

Problem 5 (10 points)

Consider the following two person game! Calculate all equilibria in pure and properly mixed strategies! Illustrate both reaction functions graphically!

Solution:

If player 1 chooses strategy C with probability α and player 2 chooses with probability β the expected utility functions of the players are given by

$$u_1(\alpha,\beta) = 4\alpha\beta + 3\alpha(1-\beta) + 4(1-\alpha)(1-\beta)$$

$$u_2(\alpha,\beta) = 2\alpha\beta + 3\alpha(1-\beta) + 4(1-\alpha)\beta + 5(1-\alpha)(1-\beta)$$

The reaction functions can be derived by

$$\begin{aligned} \frac{\partial u_1\left(\alpha,\beta\right)}{\partial\alpha} &= 4\beta + 3\left(1-\beta\right) - 4\left(1-\beta\right) \\ &= -1 + 5\beta \\ \alpha^R\left(\beta\right) &= \begin{cases} 0 & \beta < \frac{1}{5} \\ \left[0,1\right] & \beta = \frac{1}{5} \\ 1 & \beta > \frac{1}{5} \end{cases} \\ \frac{\partial u_2\left(\alpha,\beta\right)}{\partial\beta} &= 2\alpha - 3\alpha + 4\left(1-\alpha\right) - 5\left(1-\alpha\right) \\ &= -1 \\ \beta^R\left(\alpha\right) &= 0, \alpha \in [0,1] \end{aligned}$$

The graphs for the reaction functions are:

We can find one intersection of the reaction functions and therefore there is only one equilibrium (in pure strategies (D, B)) and no other equilibrium in properly mixed strategies.

Problem 6 (13 points)

Consider the utility function

$$U(x_1, x_2) = x_1^2 + 4x_2^2!$$

Assume $p_1, p_2 > 0$, $2p_1 < p_2$ and denote m as the monetary income of the household.

- a) Calculate the marginal rate of substitution! Does this utility function represent convex preferences?
- b) Determine the indirect utility function for U!
- c) Derive the Hicksian demand!

Solution

a) The marginal rate of substitution is given by:

$$MRS = \frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = \frac{x_1}{4x_2}.$$

We see that the MRS increases if x_1 increases and x_2 decreases. Note that it is not enough to focus only on x_1 because staying on an indifference curve (monotonic preferences or equivalently look at the utility function) means that a higher x_1 leads to a lower x_2 . Consequently, the preferences are concave.

b) If the household only consumes good 1, he can afford and will buy $\frac{m}{p_1}$ units of good 1. Equivalently, if he only consumes good 2, he can afford and will buy $\frac{m}{p_2}$ units of good 2. Comparing the utility levels, the household only consumes good 1 if:

$$U(\frac{m}{p_1}, 0) = \left(\frac{m}{p_1}\right)^2 > 4\left(\frac{m}{p_2}\right)^2 = U\left(0, \frac{m}{p_2}\right)$$

or

$$p_2^2 > 4p_1^2$$

which is equivalent to our assumption $2p_1 < p_2$. Therefore, the indirect utility function is given by:

$$V(p,m) = \left(\frac{m}{p_1}\right)^2.$$

c) We have:

$$\overline{U} = \chi_1^2$$

and therefore:

$$\chi_1\left(p,\overline{U}\right) = \sqrt{\overline{U}}.$$

Alternative: Solving $V(p,m) = \left(\frac{m}{p_1}\right)^2$ for m, the expenditure necessary to achieve the utility \overline{U} is given by:

$$e(p,\overline{U}) = p_1 \sqrt{\overline{U}}.$$

Now we can either apply Shephard's lemma and differentiate the expenditure function with respect to p_1 :

$$\frac{\partial(p,U)}{\partial p_1} = \chi_1(p,\overline{U}) = \sqrt{\overline{U}}$$

or replace m in the Marshallian demand by the expenditure e. The Marshallian demand is equal to:

$$x_1\left(m,p\right) = \frac{m}{p_1}$$

After replacing m by $e(p, \overline{U})$, we receive:

$$\chi_1(p,\overline{U}) = \frac{p_1\sqrt{\overline{U}}}{p_1} = \sqrt{\overline{U}}.$$

In the figure you see preferences with bliss point at B. One of these duality equations

$$e(p, V(p, m)) = m,$$

 $V(p, e(p, \overline{U})) = \overline{U}$

is not valid. Which one? Why?

Solution

We assume that the straight line through A is the budget line for the budget m and the price vector p. Given the budget m and price vector p, the maximal utility is given by V(p,m) = 9 and achieved in B. For the given price vector p, the expenditure e(p, V(p,m)) needed to achieve the utility V(p,m) = 9 is lower than m because the household optimum B is below the budget line. Hence we know that e(p, V(p,m)) < m, i.e., the first duality equation does not hold.