
Basic Basic
Programming Programming

ParadigmsParadigms
in C++in C++

Ulrich W. EiseneckerUlrich W. Eisenecker

Version 1.5a – October 16, 2024Version 1.5a – October 16, 2024

Author
Dr. Ulrich W. Eisenecker is a full professor of software development at the Institute
of Information Systems at the Leipzig University.

Disclaimer
All information in this text has been written and compiled with care. Nevertheless,
it may contain errors. Therefore, the author assumes no responsibility for the use of
this text or the information contained therein.

The use of common names, trade names, product names, etc. in this text, even
without special identification, does not justify the assumption that such names are
to be considered free in the sense of the trademark and brand protection laws and
may therefore be used by anyone.

If you feel that this work causes a legal issue that concerns you, please send an
email to bpp-book@uni-leipzig.de with detailed information.

Cover Photo
The photo on the cover was taken by the author.

Download
The text and all accompanying material can be downloaded from
https://www.wifa.uni-leipzig.de/institut-fuer-wirtschaftsinformatik/professuren/
professur-insbesondere-softwareentwicklung/studium/lehrveranstaltungen/bpp.
Newer versions will also be available for download from this website once they are
released. Errata will also be published there.

License
Basic Programming Paradigms in C++ © 2022 – 2024 by
Prof. Dr. Ulrich W. Eisenecker M.A. is licensed under CC BY-
SA 4.0

i

mailto:bpp-book@uni-leipzig.de
http://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1
https://www.wifa.uni-leipzig.de/personenprofil/mitarbeiter/prof-dr-ulrich-eisenecker
https://www.wifa.uni-leipzig.de/institut-fuer-wirtschaftsinformatik/professuren/professur-insbesondere-softwareentwicklung/studium/lehrveranstaltungen/bpp
https://www.wifa.uni-leipzig.de/institut-fuer-wirtschaftsinformatik/professuren/professur-insbesondere-softwareentwicklung/studium/lehrveranstaltungen/bpp
https://www.wifa.uni-leipzig.de/institut-fuer-wirtschaftsinformatik/professuren/professur-insbesondere-softwareentwicklung/studium/lehrveranstaltungen/bpp

Table of Contents
1. Preface...1
2. Background Information about Computing..3

2.1. Computing and Computers...3
2.2. A Simple Computer...3

2.2.1. First Task, First Program...3
2.2.2. Some Limitations and Risks...4
2.2.3. Second Task, Second Program...5
2.2.4. Generalized Program...5
2.2.5. Problem Space and Solution Space..6
2.2.6. Purposes of a Program...7

2.3. A New Computer...8
2.3.1. Porting the Program...8
2.3.2. Counting with Bits...9
2.3.3. An Infinite Design Space...10
2.3.4. Emulation of a Computer...11
2.3.5. Emulation vs. Simulation..12
2.3.6. Programming Paradigms..12

2.4. Afterthoughts...13
2.4.1. Human-Computer-System..13
2.4.2. Level of Detail..14
2.4.3. Program and Reality..14
2.4.4. Turing-Completeness...16
2.4.5. Abstract Machines..17

3. First Programs...18
3.1. Preparations...18
3.2. Values per Byte..20

3.2.1. Comments...20
3.2.2. Whitespace...20
3.2.3. #include Directive...21
3.2.4. Namespace..21
3.2.5. main() Function – First Information..21
3.2.6. Statement..22
3.2.7. return Statement...22
3.2.8. Wrap-Up..23

3.3. Values of Eight Information Units..23
3.3.1. Variables..24
3.3.2. Input...24
3.3.3. Ignoring Return Values...25
3.3.4. Line vs. Statement vs. Expression..25
3.3.5. Sequence...26

ii

3.3.6. Wrap-Up..26
3.4. Values of Eight Validated Information Units...26

3.4.1. flush..27
3.4.2. Escape Sequences...27
3.4.3. ‘\n’ vs. endl..28
3.4.4. if Statement..28
3.4.5. Flowchart..30
3.4.6. Relational Operators..31
3.4.7. Standard Error Streams..31
3.4.8. Wrap-Up..31

3.5. Values of Information Units...31
3.5.1. At First Glance...32
3.5.2. Initialization of Variables...33
3.5.3. while Loop..34
3.5.4. Assignment Operator...34
3.5.5. Control Structures...35
3.5.6. Wrap-Up and Outlook..36

3.6. Functions...36
3.6.1. inputCardinality() Function...38
3.6.2. inputNumberOfInformationUnits() Function...39
3.6.3. calculateRepresentableValues() Function..39
3.6.4. outputRepresentableValues() Function...40
3.6.5. main() Function – More Information..41

3.7. Wrap-Up..42
3.8. Testing..42

3.8.1. Unit Tests...43
3.8.2. Regression Tests..46
3.8.3. Automated Unit Tests...47

3.9. Debugging...47
3.9.1. From Source Code to Executable Program..47
3.9.2. Preprocessor..49
3.9.3. Assembler...50
3.9.4. Linker...51
3.9.5. Example for Debugging...52

4. Further Details on Basic Concepts..61
4.1. Fundamental Types..61

4.1.1. Integral Types..62
4.1.1.1. bool Type...62
4.1.1.2. Character Types...66
4.1.1.3. Integer Types..66
4.1.1.4. std::byte Type...67
4.1.1.5. Arithmetic Operators...68

iii

4.1.1.6. Promotions and Conversions...69
4.1.1.7. Assignment Operators...71
4.1.1.8. Floating Point Types...72
4.1.1.9. Real World and Computer – Again...78

4.2. More About Types...79
4.2.1. Information About Types...79
4.2.2. Pointers..84
4.2.3. Stack vs. Free Store...86
4.2.4. Dynamic Objects...87
4.2.5. References...89
4.2.6. Constants...91

4.2.6.1. Pointer to const..93
4.2.6.2. const Pointer..93
4.2.6.3. const Pointer to const...93
4.2.6.4. Naming..94

4.3. More About Functions...94
4.3.1. Declaration vs. Definition...97
4.3.2. Passing Parameters and Returning Results...99

4.3.2.1. Call by Value...99
4.3.2.2. Call by Pointer...101
4.3.2.3. Call by Reference..105

4.3.3. Returning Results...108
4.3.3.1. Return Type void..108
4.3.3.2. Returning a Reference...115
4.3.3.3. Returning a Value...116
4.3.3.4. Designing a Function...118

4.3.4. Parameters with Default Values...118
4.3.5. Function Overloading..119
4.3.6. Specifying Pointers, References, and Constness..124
4.3.7. Recursion..126

5. User-defined Types...127
5.1. Enumeration Types..127
5.2. Structured Datatypes...130

5.2.1. Rational Numbers With Fundamental Datatypes..131
5.2.2. Documentation Generation...136
5.2.3. User-defined Types for Related Data...140

5.2.3.1. Design Based on Reference Semantics..141
5.2.3.2. Design Based on Value Semantics..146

5.3. Abstract Data Types...152
5.3.1. Classes..152
5.3.2. Simple Class Buddy..154
5.3.3. Class Design Based on Reference Semantics...156

iv

5.3.4. Class Design Based on Value Semantics...166
5.3.5. Reference- vs. Value-Based Design...171

5.4. Splitting of Programs...175
5.4.1. Header and Implementation Files...177
5.4.2. Include Guard..183
5.4.3. Preventing Name Collisions...184
5.4.4. Make...186

5.5. Overloading Operators..192
5.5.1. Motivation for Overloading Operators...192
5.5.2. The Syntax of Operator Overloading..194
5.5.3. Overloading Operators for RationalNumber..197

5.6. Testing..206
5.6.1. Motivation for Automated Testing...206
5.6.2. General Design of Tests...208
5.6.3. Testing the Mathematical Helper Function...209
5.6.4. Testing of RationalNumber..210
5.6.5. Testing Operators For RationalNumber...214
5.6.6. Full Test...217
5.6.7. Makefile And Testing...219

6. Motivation for the Case Study...222
6.1. A Rule-based Inference Engine...223
6.2. Requirements Analysis...225

6.2.1. System Documentation...226
6.2.2. Use of the Legacy System..235

6.3. Analysis Model..238
6.4. Design Model...242

6.4.1. Data..242
6.4.1.1. Digression...244
6.4.1.2. KnowledgeBase...245
6.4.1.3. LegalAnswers...245
6.4.1.4. Questions..248
6.4.1.5. Rule...250
6.4.1.6. Rules...253
6.4.1.7. Variables..255
6.4.1.8. Data Perspective Consolidated..256
6.4.1.9. Critical Review and Completion...257

6.4.2. Loading..261
6.4.3. Processing...269

6.5. Implementation..278
6.5.1. Include Files...278
6.5.2. Logger Class..279
6.5.3. toupper() Function...283

v

6.5.4. LegalAnswers Class..284
6.5.5. Variables Class...287
6.5.6. Pending Declarations...290
6.5.7. Questions Class..292
6.5.8. Rule Class..297
6.5.9. Rules Class..301
6.5.10. KnowledgeBase Class..302

6.5.10.1. KnowledgeBase Member Functions..304
6.5.10.2. Member Functions for Loading..304
6.5.10.3. Member Function for Testing...315
6.5.10.4. Member Function for Processing...315
6.5.10.5. Member Functions for Interaction..316

6.6. Evaluation...320
6.7. Outlook..321

7. References..324

vi

List of Illustrations
Figure 1: Simple computer with stick and rings...3
Figure 2: Problem and solution space..7
Figure 3: Digital counter..8
Figure 4: Emulated stick-and-rings computer...11
Figure 5: Doll house (By diepuppenstubensammlerin from Ruhrgebiet

Deutschland - 1974 OKWA dolls house, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=25946023)..............15

Figure 6: Source program in a plain text editor..18
Figure 7: Console-window...19
Figure 8: Source program in a browser window; previously “Run” was pressed.19
Figure 9: Flowchart of the program shown in Listing 3...30
Figure 10: Abstract syntax tree for a = (b + c) * 4;...48
Figure 11: Chained mappings of problem and solution spaces..................................49
Figure 12: Debugging Checksum.cpp with nemiver..55
Figure 13: Debugger shows function-call stack and local variables..........................57
Figure 14: Debugger shows source lines and assembler code....................................59
Figure 15: Sample dialog for executing FloatOutput.cpp (Listing 13).......................74
Figure 16: Output generated by for loop – exact computation (Listing 14).............75
Figure 17: Output generated by for loop – inexact computation (Listing 15).........75
Figure 18: Output of the Sizeof.cpp program (Listing 18)..80
Figure 19: Type information in tabular form..82
Figure 20: Sample dialog for executing the CallByValue.cpp program..................100
Figure 21: Sample dialog for executing the CallByPointer.cpp program...............103
Figure 22: Variety of pointers..104
Figure 23: Output of the CallByReference.cpp program (Listing 46)......................106
Figure 24: Test of reverseString1() with “Hello”...112
Figure 25: Test of reverseString1() with “Hi”...112
Figure 26: Test of reverseString1() with “X”..112
Figure 27: index.html generated by Doxygen...138
Figure 28: File List generated by Doxygen...138
Figure 29: File reference generated by Doxygen..139
Figure 30: Call graph generated by Doxygen...140
Figure 31: Menu entry for classes...145
Figure 32: Documentation generated by Doxygen for struct RationalNumber...146
Figure 33: Debugging the reference-based program, part 1......................................172
Figure 34: Debugging the reference-based program, part 2......................................173
Figure 35: Debugging the value-based program, part 1...174
Figure 36: Debugging the value-based program, part 2...175
Figure 37: Separate compilation, linking and execution..182
Figure 38: Dependency graph..187

vii

Figure 39: Example directory structure for a C++ project...188
Figure 40: Report for successful test..217
Figure 41: Report for failed test...218
Figure 42: Focus on the solution space..222
Figure 43: Adaptive and unordered containers of the C++ STL................................236
Figure 44: UML class diagram of the KnowledgeBase analysis model...................240
Figure 45: KnowledgeBase class from the data perspective.....................................245
Figure 46: LegalAnswers class from the data perspective...248
Figure 47: Questions class from the data perspective...250
Figure 48: Output for consulting ec/ORDERCND.KB with tracing enabled............251
Figure 49: Output for consulting ec/DUPLCND.KB with tracing enabled...............251
Figure 50: Error message when consulting ec/CONTRCND.KB.................................252
Figure 51: Rule class from the data perspective...253
Figure 52: Rules class from the data perspective...254
Figure 53: Variables class from the data perspective..256
Figure 54: Consolidated class diagram from the data perspective..........................257
Figure 55: Processing of ec/TXT81.KB saved in UNIX format....................................259
Figure 56: Processing of ec/TXT81DOS.KB saved in MS-DOS format......................260
Figure 57: Processing of ec/TXT81MAC.KB saved in macOS format........................260
Figure 58: Processing of inputs by the ec/InputToken.cpp program.......................262
Figure 59: Interactive execution of the ec/InputToken.cpp program.....................263
Figure 60: Class diagram with integrated data and loading perspective...............269
Figure 61: Sequence diagram for starting prove()...271
Figure 62: Sequence diagram for further processing of prove()..............................272
Figure 63: Flowchart for the Pseudo code of Rule::prove().......................................274
Figure 64: Sequence diagram for the further processing of prove().......................275
Figure 65: Class diagram with integration of all perspectives..................................277
Figure 66: Program execution with logging enabled..283

viii

List of Tables
Table 1: Comparison of programs for counting people and counting cups...............5
Table 2: Programs for stick-and-rings computer vs. digital counter...........................9
Table 3: 16-bit memory..9
Table 4: 32,768 in big-endian and little-endian byte order..10
Table 5: Programs for stick-and-rings computer vs. emulated computer................12
Table 6: Abstract representation of the doll house in tabular form..........................16
Table 7: Schemes of if statements...29
Table 8: Expected results for testing calculateRepresentableValues()......................44
Table 9: Fundamental types in C++...62
Table 10: C++ string "Hello"s..109
Table 11: Algorithmic quantities for reverting a string (natural index values)...110
Table 12: Natural index values for reverting “Hello”s..110
Table 13: Algorithmic quantities for reverting a string (C++ index values)..........110
Table 14: C++ index values for reverting “Hello”s..110
Table 15: Common German Grading System for Doctorates.....................................127
Table 16: Classification of functions...176
Table 17: Evaluation of (a.add(b)).divide(a.subtract(c)); (1st possibility)................193
Table 18: Evaluation of (a.add(b)).divide(a.subtract(c)); (2nd possibility)...............193
Table 19: Evaluation of (a.add(b)).divide(a_copy.subtract(c)) (1st possibility).....193
Table 20: Evaluation of (a.add(b)).divide(a_copy.subtract(c)) (2nd possibility).....194
Table 21: Requirement candidates extracted from MAN and TUT..........................229
Table 22: Consolidated and structured requirements..235
Table 23: Further requirements for LEGALANSWERS...247
Table 24: Further requirements for QUESTION..250
Table 25: Further requirements for RULE and RULES..255
Table 26: Further requirements for variable names, text and Top Level..............261
Table 27: Requirement 1.7.6 revised..295

ix

List of Source Programs
Listing 1: ValuesPerByte.cpp..20
Listing 2: ValuesOfEightInformationUnits.cpp..24
Listing 3: ValuesOfEightValidatedInformationUnits.cpp..27
Listing 4: ValuesOfInformationUnits.cpp..32
Listing 5: ValuesOfInformationUnits.cpp with comment (excerpt)...........................37
Listing 6: ValuesOfInformationUnitsWithFunctions.cpp...38
Listing 7: Blocks and hiding identifiers with the same name (excerpt)...................39
Listing 8: UnitTestOfCalculateRepresentableValues.cpp...45
Listing 9: Checksum.cpp..53
Listing 10: Booleans.cpp..64
Listing 11: UnsignedVsSigned.cpp..70
Listing 12: UnsignedVsSignedIntShorter.cpp...72
Listing 13: FloatOutput.cpp...74
Listing 14: for loop – exact computation...75
Listing 15: for loop – inexact computation...75
Listing 16: TestingFloats.cpp..76
Listing 17: Infinity_NaN.cpp...77
Listing 18: Sizeof.cpp..79
Listing 19: TypeInformation.cpp...81
Listing 20: NumericLimits.cpp...83
Listing 21: Pointer...85
Listing 22: Dereferencing a pointer..85
Listing 23: Dangling pointer...85
Listing 24: Checking for valid pointer...86
Listing 25: Incompatible pointer types..86
Listing 26: Dynamic object..87
Listing 27: Dereferencing a pointer..87
Listing 28: Using a dereferenced pointer..87
Listing 29: Releasing a pointer...88
Listing 30: References.cpp...89
Listing 31: ReferenceToPointer.cpp..90
Listing 32: Euler’s number..91
Listing 33: Euler’s number as constant...91
Listing 34: Reference to const for const object..91
Listing 35: Reference to const for non-const object...91
Listing 36: PointerAndConst.cpp...92
Listing 37: ChecksumMain.cpp..95
Listing 38: ChecksumFunction.cpp...96
Listing 39: checksum() with [[nodiscard]] attribute..97
Listing 40: Declaration, which is also a definition..98

x

Listing 41: Declaration and separate definition..98
Listing 42: CallByValue.cpp...100
Listing 43: Pass call-by-value parameter as const..101
Listing 44: CallByPointer.cpp..102
Listing 45: const pointer as function parameter..105
Listing 46: CallByReference.cpp..106
Listing 47: integralDivision() function with reference-to-const parameters........107
Listing 48: Alternative declaration of integralDivision() function..........................107
Listing 49: ReturnVoid.cpp..111
Listing 50: Paper-pencil test of reverseString1() function for “X”...........................113
Listing 51: ReturnVoidImproved.cpp...114
Listing 52: ReturnReference.cpp...115
Listing 53: ReturnValue.cpp...116
Listing 54: ReturnValue2ndVersion.cpp..117
Listing 55: Prototype of the estimatedRange() function...118
Listing 56: Prototype of estimatedRange() function with default parameters.....118
Listing 57: Overloading.cpp..120
Listing 58: MoreOverloading_A.cpp...121
Listing 59: MoreOverloading_B.cpp...122
Listing 60: MoreOverloading_C.cpp...123
Listing 61: AsteriskAndAmpersand.cpp..124
Listing 62: * and & placed immediately before the variable name.........................125
Listing 63: & and & placed immediately after the type...125
Listing 64: EffectOfConst.cpp...126
Listing 65: Grades.cpp..128
Listing 66: RationalNumberSimple.cpp..134
Listing 67: RationalNumberSimple_Doxyfile...137
Listing 68: struct RationalNumber...141
Listing 69: Declaration of a variable of RationalNumber type.................................141
Listing 70: Sending RationalNumber data members to cout....................................141
Listing 71: Default initialization of data members in a struct..................................141
Listing 72: RationalNumberStructureReferenceSemantics.cpp...............................144
Listing 73: Alternative design of add() function...145
Listing 74: RationalNumberStructureReferenceSemantics_Doxyfile.....................145
Listing 75: RationalNumberStructureValueSemantics.cpp..149
Listing 76: inputInt() function...150
Listing 77: Declaration and initialization of variables by function call.................150
Listing 78: Combining normalization and initialization..150
Listing 79: normalize() function rewritten..151
Listing 80: InputRationalNumber() function rewritten..151
Listing 81: add() function rewritten...152
Listing 82: Schema for defining a class...153

xi

Listing 83: Buddy.cpp...154
Listing 84: Passing a Buddy exemplar by value..155
Listing 85: RationalNumberClassReferenceSemantics.cpp.......................................161
Listing 86: One calculation per statement..164
Listing 87: An expression that combines all calculations..164
Listing 88: Multiplying a RationalNumber variable by itself....................................164
Listing 89: Dividing different RationalNumbers gives the correct result..............165
Listing 90: Dividing RationalNumber by itself gives wrong results........................165
Listing 91: Improved implementation of RationalNumber::divide()......................165
Listing 92: Changing the declaration of RationalNumber::divide().........................166
Listing 93: RationalNumberClassValueSemantics.cpp..169
Listing 94: RatNumRefSem_1/math_helper.hpp..177
Listing 95: RatNumRefSem_1/math_helper.cpp..178
Listing 96: RatNumRefSem_1/rational_number.hpp..179
Listing 97: RatNumRefSem_1/rational_number.cpp..181
Listing 98: RatNumRefSem_2/math_helper.hpp..183
Listing 99: RatNumRefSem_2/rational_number.hpp..184
Listing 100: RatNumRefSem_3/math_helper.hpp...184
Listing 101: RatNumRefSem_3/math_helper.cpp..185
Listing 102: RatNumRefSem_3/rational_number.hpp (abridged)............................185
Listing 103: RatNumRefSem_3/rational_number.cpp (excerpt)................................185
Listing 104: RatNumRefSem_3/main.cpp (excerpt)..186
Listing 105: RatNumRefSem/makefile.simple..189
Listing 106: RatNumRefSem/makefile...191
Listing 107: RatNumRefSem/Doxyfile..191
Listing 108: Evaluation of (a.add(b)).divide(a_copy.subtract(c));.............................193
Listing 109: Overloading operator +() as a member function...................................195
Listing 110: Overloading operator +() as a free function...196
Listing 111: RatNumRefSemOp/rational_number.hpp (excerpt)..............................199
Listing 112: RatNumRefSemOp/rational_number.cpp (excerpt)..............................200
Listing 113: RatNumRefSemOp/rational_number_operators.hpp...........................200
Listing 114: RatNumRefSemOp/rational_number_operators.cpp............................201
Listing 115: RatNumRefSemOp/main.cpp..203
Listing 116: RatNumValSemOp/rational_number.hpp..204
Listing 117: RatNumValSemOp/rational_number.cpp...205
Listing 118: Declaring and inputting a RationalNumber (reference-based design)206
Listing 119: Declaring and inputting a RationalNumber (value-based design)...206
Listing 120: RatNumRefSemOp/src/full_test.cpp..208
Listing 121: RatNumRefSemOp/src/math_helper_test.cpp...209
Listing 122: RatNumRefSemOp/src/rational_number_test.cpp.................................213
Listing 123: RatNumRefSemOp/src/rational_number_operators_test.cpp............216
Listing 124: RatNumRefSemOp/makefile..220

xii

Listing 125: RatNumRefSemOp/Doxyfile..221
Listing 126: GOAL rule from UN_AD_CN.KB..236
Listing 127: LEGALANSWERS rule from UN_AD_CN.KB...236
Listing 128: ANSWER rule from UN_AD_CN.KB..237
Listing 129: Exemplary QUESTION rule from UN_AD_CN.KB...................................237
Listing 130: Exemplary IF rule from UN_AD_CN.KB..237
Listing 131: Complete UN_AD_CN.KB knowledge base...238
Listing 132: ec/51SameLegalAnswers.cpp..246
Listing 133: ec/LA1.KB..247
Listing 134: ec/LA0.KB..247
Listing 135: ec/101SameQuestions.cpp..249
Listing 136: ec/ORDERCND.KB...250
Listing 137: Rule of ec/ORDERCND.KB with reverse order of conditions..............251
Listing 138: ec/DUPLCND.KB..251
Listing 139: ec/CONTRCND.KB...252
Listing 140: ec/401RuleLines.cpp..253
Listing 141: ec/VAR41.KB...258
Listing 142: ec/VAL41.KB...258
Listing 143: ec/TXT81.KB...259
Listing 144: ec/InputToken.cpp..262
Listing 145: ec/Input2TokenTypes.cpp..264
Listing 146: Pseudo code for loading a knowledge base..266
Listing 147: Pseudo code for inputting a LegalAnswer...267
Listing 148: Pseudo code for inputting a Rule...268
Listing 149: Pseudo code for inputting a Question..268
Listing 150: Declaration of KnowledgeBase::prove()...270
Listing 151: Declaration of Rules::prove()..270
Listing 152: Pseudo code of Rules::prove()...271
Listing 153: Declaration of Rule::prove()..272
Listing 154: Pseudo code of Rule::prove()...272
Listing 155: Declaration of KnowledgeBase::askValue()...275
Listing 156: Declaration of Questions::ask()...276
Listing 157: Pseudo code of Questions::ask()...276
Listing 158: EC.cpp – included files..278
Listing 159: EC.cpp – Logger class...280
Listing 160: ec/LoggerDemo.cpp (excerpt)...282
Listing 161: EC.cpp – toupper() function...283
Listing 162: EC.cpp – LegalAnswers class...285
Listing 163: EC.cpp – Variables class..288
Listing 164: PingPongImpossible.cpp..291
Listing 165: PingPong.cpp...292
Listing 166: EC.cpp – Questions class...294

xiii

Listing 167: Questions::add(), which fully complies with requirement 1.7.6.......294
Listing 168: ec/EC.cpp – Rule class..298
Listing 169: EC.cpp – Rules class...302
Listing 170: EC.cpp – Data members of KnowledgeBase class..................................303
Listing 171: EC.cpp – KnowledgeBase::error()...305
Listing 172: Checking for and reporting an error..305
Listing 173: Checking for and reporting an error with KnowledgeBase::error() 305
Listing 174: EC.cpp – KnowledgeBase::inputToken()...306
Listing 175: EC.cpp – KnowledgeBase::inputIsAre()..307
Listing 176: EC.cpp – KnowledgeBase::inputVariableValue()....................................308
Listing 177: EC.cpp – KnowledgeBase::inputLegalAnswers()....................................309
Listing 178: EC.cpp – KnowledgeBase::inputGoal()..310
Listing 179: EC.cpp – KnowledgeBase::inputRule()..310
Listing 180: ANIMAL knowledge base (excerpt)...311
Listing 181: EC.cpp – KnowledgeBase::inputQuestion()..312
Listing 182: EC.cpp – KnowledgeBase::inputAnswer()..313
Listing 183: EC.cpp – KnowledgeBase::input()...314
Listing 184: EC.cpp – KnowledgeBase::output()..315
Listing 185: EC.cpp – KnowledgeBase::prove()..315
Listing 186: EC.cpp – KnowledgeBase::inputCommand()...316
Listing 187: EC.cpp – KnowledgeBase::run()..317
Listing 188: EC.cpp – various..318
Listing 189: EC.cpp – main()...319

xiv

1. Preface
The target audience for this text is students of computer science or information
systems. It is the companion book to the Basic Programming Paradigms lecture. It
introduces procedural programming and programming with abstract data types
and gives a first insight into object-oriented programming. The rule-based paradigm
is also presented, but as an application; it is not used for programming.

In addition to pure programming, other programming-related activities are
presented, namely (automated) documentation, (automated) testing, requirements
engineering, and analysis and design. Selected characteristics of software quality
are also discussed.

The text also addresses computational thinking as presented in (Abelson & Kong,
2019). This includes the essential areas of data practices, modeling and simulation
practices, problem-solving practices, and systems thinking practices. In particular,
computational thinking is used to understand aspects of programming or to develop
solutions to problems in programming.

C++ is used as a means to pursue the aforementioned goals. The aim of this text is
not to provide a comprehensive overview of the C++ language and its libraries.
Instead, a didactic approach was chosen in which basic paradigms and concepts for
programming a solution are presented using small applications. Finally, the
programming of an expert system shell serves as a realistic case study. To
emphasize the use of C++, the title of this text has been changed to Basic
Programming Paradigms in C++.

Platforms and tools are also important. Programming only in theory is mostly
pointless. But there are so many platforms, i.e. operating systems or web browsers,
and tools that it is impossible to present them even in extracts. To look for tools and
platforms and to try them out depends decisively on oneself.

Nevertheless, here are some recommendations. For the first steps in programming,
an editor and a compiler running in a web browser may be sufficient. Very soon,
more will be needed. Ubuntu, a Linux distribution, and an additionally installed
GNU compiler collection including a C++ compiler, be it g++ or clang, are well suited
for the next programming steps. For editing program texts, Vim or Gvim (mvim on
macOS) is a useful tool, available both as a console application and as an application
with a graphical user interface. In some cases, an integrated development
environment (IDE in short), such as Code::Blocks, can be useful because it provides
an integrated visual debugger. Otherwise, it is sufficient to use command line tools
such as Doxygen, make, etc. Learning command line tools pays off for a lifetime. The
investment in learning a graphical user interface is very often lost as soon as a new
version of the operating system or the corresponding application is released.

– 1 –

The LibreOffice suite was used for writing this text. Google Noto fonts were used for
the typesetting. For programming, the tools mentioned above were used.

The text was originally written in English by a non-native speaker. To check the
linguistic quality www.deepl.com was very helpful.

This text is intended for online reading, e.g. on a tablet computer. It does not have a
book layout. If a printed version is desired, a color printer should be used. This is
also one reason why there is no keyword index in the appendix. Instead, the
electronic version is simply searched for the desired keyword or its stem.

I would like to thank Uli Breymann, Nico Willert, Christoph Diesener, Iuliia
Shcherbina, Janik Eriksson, Tom Marvin Schmiedke, Fritz Böhme, Valentin Morio,
Hoang Nguyen, Yannis Hübenthal and other students whose names escape me for
reading parts of earlier versions of this text and pointing out errors.

I thank Lennard Apel, who redrew most of the illustrations.

I am indebted to my wife, who patiently endured the many hours I spent with the
computer to create this text and all the programs, and not with her.

If you would like to suggest changes or improvements, report errors, or you want to
communicate any other concern related to this text please provide detailed
information about the text passages and any necessary supporting or background
information. Please e-mail them to bpp-book@uni-leipzig.de.

– 2 –

mailto:bpp-book@uni-leipzig.de
http://www.deepl.com/

2. Background Information about Computing

2.1. Computing and Computers
Computing originates in the Latin verb computare, which means to calculate or to
estimate. Basically, computing means to perform computations using some device.
Today, computer refers to an electronic device performing the computation. A
computing device must reveal the result of the computation or, formulated more
abstractly, the result must be measurable, for example, by looking at it. Optionally,
data for performing the computation may be entered. The computation is described
by a program. The program includes instructions that control its execution and data
that is processed during execution.

2.2. A Simple Computer
Imagine a stick with a plate at its lower end and rings with holes which can be
slipped over the stick. Together, the stick and the rings constitute a primitive
computing device (Figure 1).

Figure 1: Simple computer with stick and rings

2.2.1. First Task, First Program
Imagine, there is a house and you have to find out, how many people are in the
house. Here is the program for performing this task:

– 3 –

1. Before entering the house remove all rings from the stick and get a reserve of
rings.

2. Enter the first room of the house.
3. For each person you see, slip one ring over the stick.
4. If there is a next room go to it and repeat the previous step.
5. Leave the house and count the number of rings slipped over the stick. The

result equals the number of persons in the house.

It has to be mentioned that, if the condition of the fourth step does not apply, the
program is continued with the next step. The computing device consists of the stick
and the rings. The result of the computation is always visible and easy to measure. It
equals the number of rings slipped over the stick, thus counting them is sufficient.
There are two operations for entering data, namely removing a ring and slipping a
ring over the stick. Before starting a computation, all rings have to be removed from
the stick, after completing a computation the result can be obtained by counting the
number of rings on the stick.

This computer does not do anything what you cannot do yourself as a human being.
But it is patient. If the computation is interrupted it can be continued any time later.
Especially, if you forgot – for whatever reason – the number of people already
counted, this computer does remember it.

2.2.2. Some Limitations and Risks
Obviously, there are some limitations and some risks using this computer.

A first limitation is, that using the computer relies on your ability to recognize
different people in a room and to remember for which of them you already slipped
a ring over the stick. A second limitation is that people may neither enter or leave
the house nor move between rooms as long as the computation is in progress. To
forbid moving between rooms is necessary because of the first limitation, which
requires to memorize only people that have been counted in one room but not in
the entire house. A third limitation is that all rooms must be accessible and you may
not omit a room.

Now for the risks. The first risk is that you point the stick – for whatever reason –
downwards and the rings fall from the stick. This risk is relevant when a
computation is in progress. After the result has been obtained, it is no longer
relevant, when rings are removed from the stick. The second risk is, that the stick
breaks. This may prevent a computation or stop it prematurely. A third risk is, that
the supply of rings runs out, which may prevent the completion of a computation.

– 4 –

2.2.3. Second Task, Second Program
Let us consider another task, namely counting the number of cups in a kitchen.
Cups may be stored in various cupboards, in the dish washer, and somewhere else
in the kitchen. The goal is to write a program for accomplishing this task using the
same level of abstraction as for the previous program counting people in a house.

Maybe the result is a program similar to this:

1. Before entering the kitchen remove all rings from the stick and get a reserve
of rings.

2. Examine the first place in the kitchen.
3. For each cup you see slip one ring over the stick.
4. If there is a next place examine it and repeat the previous step.
5. Leave the kitchen and count the number of rings slipped over the stick. The

result equals the number of cups in the kitchen.

Table 1 places the two descriptions side by side, whereby the differences are
colorized.

Counting people Counting cups

1. Before entering the house remove
all rings from the stick and get a
reserve of rings.

2. Enter the first room of the house.
3. For each person you see, slip one

ring over the stick.
4. If there is a next room enter it and

repeat the previous step.
5. Leave the house and count the

number of rings slipped over the
stick. The result equals the
number of persons in the house.

1. Before entering the kitchen
remove all rings from the stick
and get a reserve of rings.

2. Examine the first place in the
kitchen.

3. For each cup you see slip one ring
over the stick.

4. If there is a next place examine it
and repeat the previous step.

5. Leave the kitchen and count the
number of rings slipped over the
stick. The result equals the
number of cups in the kitchen.

Table 1: Comparison of programs for counting people and counting cups

2.2.4. Generalized Program
Probably, there is a large number of similar programs, all of them counting items in
a structured space. Writing all these programs would be a tedious affair. Is it
possible to devise a program focusing on the commonalities while abstracting from
differences? Yes, it is. To do so, a few generalizations are required:

– 5 –

• “house”, “kitchen” “space”→
• “enter”, “examine” “visit”→
• “room”, “place” “sub space”→
• “of”, “in” “of”→
• “person”, “cup” “item”→

Applying these generalizations gives the following program (the generalized terms
are colorized):

1. Before entering the space remove all rings from the stick and get a reserve of
rings.

2. Examine the first sub space of the space.
3. For each item you see slip one ring over the stick.
4. If there is a next sub space visit it and repeat the previous step.
5. Leave the space and count the number of rings slipped over the stick. The

result equals the number of items in the space.

The more general this resulting program is, the more generally applicable it is. The
amount of its generality depends on how successfully task-specific details were
identified and replaced by adequate abstractions.

Obviously, this program can be used for, e.g., counting the pieces of cutlery in a
drawer. Before doing so, the user of the program has to consider that space means
drawer, sub space means compartment, item means piece of cutlery. For this reason,
the user has to have a sufficient understanding not only of the specific task, but also
of the program. Besides the necessary mapping of general terms to task-specific
vocabulary the user must also know how to handle the computing device, that is,
the stick and the rings as well as the operations slipping and removing a ring and
counting the final number of rings to obtain the result.

2.2.5. Problem Space and Solution Space
Interestingly, this offers a first opportunity to distinguish between the user’s
perspective of a program and the perspective of a programmer, who writes the
program.

For the user it is essential to understand the task they should accomplish, while the
programmer must know the computing device, the computing operations, and the
structure of the program. These two perspectives, they may be adequately called
problem space and solution space, are interfaced by the program (Figure 2). From
the user’s perspective using a program should only require minimal additional
knowledge beyond their specific task.

– 6 –

Figure 2: Problem and solution space

Thus, using the generalized program requires some program-related knowledge,
namely the mapping of task-specific vocabulary to the possibly more abstract terms
of the program. A program, specifically designed for a certain task, requires less
knowledge.

Obviously, this is a tension between two poles. The writing of task-specific
programs is a burden for the programmer, while using a generalized program
is a burden for the user. The programmer′s burden increases with each
additional task-specific program they have to write, while the user′s effort in
learning a more generalized program amortizes with each use of the program.

For now, it is sufficient to be aware of this tradeoff and to understand its
consequences. Of course, this tension can be mitigated, but for now this will not be
done.

Knowing about problem and solution space, the relation between them, the
purposes of a program, and the roles of a user and a programmer are
absolutely essential in software development.

2.2.6. Purposes of a Program
The preceding paragraph mentions the purposes of a program. Why is there more
than one purpose? Of course, the first purpose of a program is to support the user in
performing a task. But there is a second purpose as well. The program also serves
the programmer. A programmer must read and understand a program

• to fit it to a changing task,
• to create a copy of it which is adapted to a new, but similar task afterwards,
• to increase its generality,
• to port it to a new computer,
• to fix errors.

If a program makes these activities difficult or prevents them, it can suddenly
become unusable if a task changes slightly or if one task is replaced by another.

– 7 –

Problem space
● Concepts
● Features
● Relations

Solution space
● Computer
● Operations
● Program

Interface
● Mapping

of terms
● Using the

program

Moreover, the program cannot be used to support structurally equivalent tasks or
serve as a template for creating programs for new but similar tasks.

2.3. A New Computer
For whatever reason, one day the stick-and-rings-computer is replaced by an
electronic device. It will be called digital counter (Figure 3). Its case has a display
which always shows the state of its internal memory interpreted as an unsigned
integral number. It offers three buttons triggering the operations clear, increment by
one, and decrement by one. Accordingly, the buttons are labelled C, +1, and -1. -1 is
provided for convenience only, in case +1 has been pressed inadvertently. Then +1
can be instantaneously redone without having to press C to start anew. In fact, -1 is
not covered explicitly in the following program. The internal memory has a capacity
of 16 bit. A bit is the smallest information unit and will be explained in detail soon.

Figure 3: Digital counter

2.3.1. Porting the Program
Now, the program for the stick-and-rings computer has to be ported to the digital
counter. The generalized program for counting items in a structured space will
serve as a starting point. The specifics of the stick-and-rings computer are mapped
to the digital counter:

• “remove all rings from the stick” “press → C”
• “and get a reserve of rings” (nothing) – the internal memory must suffice→
• “slip one ring over the stick” “press → +1”
• “count the number of rings slipped over the stick” “read the number on the→

display”

For comparison, Table 2 aligns both versions side-by-side with all changes
highlighted.

Stick-and-rings computer Digital counter

1. Before entering the space remove
all rings from the stick and get a

1. Before entering the space press C.

– 8 –

65535

C +1 -1

16 bit internal
memory
(invisible)

Stick-and-rings computer Digital counter

reserve of rings.
2. Examine the first sub space of the

space.
3. For each item you see slip one

ring over the stick.
4. If there is a next sub space visit it

and repeat the previous step.
5. Leave the space and count the

number of rings slipped over the
stick. The result equals the
number of items in the space.

2. Examine the first sub space of the
space.

3. For each item you see press +1.

4. If there is a next sub space visit it
and repeat the previous step.

5. Leave the space and read the
number on the display. The result
equals the number of items in the
space.

Table 2: Programs for stick-and-rings computer vs. digital counter

2.3.2. Counting with Bits
No knowledge of the digital counter's internal operation is required to use it. It is
sufficient to know about the effect of pressing a certain button. Nevertheless, the
following program illustrates a possibility how to count using bits.

The memory consists of 16 switches which correspond to the individual bits. If a
switch is open, this means a bit with value 0, if a switch is closed, this means a bit
with value 1. To depict the memory the bits are ordered from right to left from the
lowest to the highest bit. Table 3 gives an impression with all bits set to 0. The lowest
bit has rank 0, the highest bit has rank 15. The bit with the lowest rank is also called
the least significant bit (abbr. LSB), and the bit with the highest rank is called most
significant bit (abbr. MSB)

↓ Highest bit Lowest bit ↆ ↓
Rank 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: 16-bit memory

Now, a program can be formulated which adds 1 to any number being
representable by this memory:

1. Define a pointer and let it point to the lowest bit.
2. If the bit the pointer points to is 0, change it to 1 and stop the program.
3. Change the bit, to which the pointer points, to 0.
4. If the pointer already points to the highest bit, issue an error message and

stop the program.

– 9 –

5. Let the pointer point to the next higher rank and continue with step 2.

Well, this program does not clarify everything. For example, it is not described how
the pointer is realized. However, it illustrates how the immediate successor of an
integral number is computed. As a consequence, it becomes obvious that there are
216 possible different patterns of 0’s and 1’s which can be mapped to integral
numbers from 0 to 65,535.

Knowing this one may come up with programs for setting all bits to 0 and for
decreasing a number representable by this memory by 1. This can be done as an
exercise.

2.3.3. An Infinite Design Space
There is one more important aspect. The realization of the memory described above
is only one out of a large number of possibilities. For example, a closed switch could
represent a bit with value 0 and an open switch could represent a bit with value 1.
The bits could be ordered ascending from left to right from lowest bit to highest bit.
Bits could be grouped in bytes, each byte comprising 8 bits. Thus, a memory with 16
bits would consist of 2 bytes.

These two bytes may be arranged in two ways: High Byte first or Low Byte first. This
byte order, which is called endianness, is very important, because it can vary
between different computer systems. The byte order with the highest byte first and
the lowest byte last is called big-endian. The byte order with the lowest byte first
and the highest byte last is called little-endian. Table 4 shows how the integer
32,768 is represented in big-endian and little-endian byte order. In the following, a
big-endian byte order is assumed unless otherwise specified.

Big endian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Little endian 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 4: 32,768 in big-endian and little-endian byte order

Besides these purely structural variations anything else, that can be physically
implemented, could be used for representing the two different states of a bit. And,
by the way, the constraint of using bits is not a necessary one. Also, decimal
numbers or numbers of any numeral base could be used.

Obviously, the only relevant aspect for writing a program is the abstract
definition of a computer and its operations. The inner structure of a computer
and how its operations are implemented should not be relevant for the
programmer. Of course, for a person designing a computer and implementing it this
is essential to know.

– 10 –

2.3.4. Emulation of a Computer
Assume, the stick-and-rings computer should be replaced by a digital counter in
such a way, that the user does not experience a substantial change. Substantial
change means, the corresponding program is altered fundamentally. To avoid this
simply the housing and the display of the digital counter are exchanged. Instead an
integer the display shows a stick with rings. Furthermore, only two of the three
buttons are used. They are labelled add ring and remove ring. Figure 4 shows how
the resulting computer could look.

Figure 4: Emulated stick-and-rings computer

This requires only little changes when rewriting the program. Both versions are
compared in Table 5 using two columns and highlighting the changes.

Stick-and-rings computer Emulated computer
1. Before entering the space remove

all rings from the stick and get a
reserve of rings.

2. Examine the first sub space of the
space.

3. For each item you see slip one
ring over the stick.

4. If there is a next sub space visit it
and repeat the previous step.

5. Leave the space and count the
number of rings slipped over the
stick. The result equals the
number of items in the space.

1. Before entering the space remove
all rings from the stick.

2. Examine the first sub space of the
space.

3. For each item you see slip one
ring over the stick.

4. If there is a next sub space visit it
and repeat the previous step.

5. Leave the space and count the
number of rings slipped over the
stick. The result equals the
number of items in the space.

Table 5: Programs for stick-and-rings computer vs. emulated computer

– 11 –

Add
ring

Remove
ring

The only change is, that “and get a reserve of rings” is removed. This is definitively
no problem. It may be possible to slip about 10 to 20 rings over the stick, so they still
can be discriminated visually. This value is considerably below the limit of 65,535.

It is a fundamental insight that one computer can be replaced by another
computer in a way, that the replacing computer emulates the replaced
computer. This means, that the emulation mimics the original to an extent, so that
the emulation is almost indistinguishable from the original – at least, not from the
perspective of a program.

As emphasized before, a program is written against an abstract specification of a
computer and its operations. A consequence of emulation is, that an abstract
specification of a computer and its operations can be implemented by another
program, provided both abstract specifications and operations are powerful
enough. Eventually, an abstract specification of a computer and its operations must
be implemented in hardware. But this implementation may be very different from
the original program. This way the solution space introduced before can be – and in
practice most often is – just another problem space, namely that of programming
language design – which eventually maps to a solution space which is related to the
underlying hardware.

2.3.5. Emulation vs. Simulation
There is an important difference between emulation and simulation. An emulation
is a full replacement of the original, while the simulation contains important
aspects of the original but cannot replace it. Emulating or simulating a coffee
machine may result in the insight, that it takes 5 minutes to produce a pitcher of
fresh coffee. But the emulator produces real coffee one can drink, the simulator
does not.

2.3.6. Programming Paradigms
The background of performing computation is now almost complete. In the
following text a computer is introduced which is programmed in a programming
language called C++. The choice of C++ is arbitrarily. C++ encompasses many ideas
how to program a computer. Such an idea, for example, object-oriented
programming, is called a programming paradigm. A programming paradigm
combines specific concepts, their features and their relations. It is even possible to
combine concepts of different programming paradigms. This may lead to conflicting
or emergent phenomenons. Various programming paradigms and their interactions
will be presented in the following.

– 12 –

2.4. Afterthoughts

2.4.1. Human-Computer-System
A critical look at the first program reveals that it does not exclusively address the
stick-and-rings computer. In the following version a comment at the end of each line
denotes the addressee of this part of the program. Each comment starts with // and
is highlighted as well.

1. Before entering the house remove all rings from the stick and get a reserve of
rings. // This step addresses the user; removing the rings involves the
computer.

2. Enter the first room of the house. // This step addresses the user.
3. For each person you see, slip one ring over the stick. // This step addresses the

user; slipping a ring involves the computer.
4. If there is a next room, go to it and repeat the previous step. // This step

addresses the user.
5. Leave the house and count the number of rings slipped over the stick. The

result equals the number of persons in the house. // This step addresses the
user; counting the rings involves the computer.

All steps are directed to the user, not to the computer! Two steps do not involve the
computer at all (2 and 4). In three steps the user makes use of the computer (1, 3 and
5). There is no step exclusively directed to the computer.

Obviously, this program is more for a user, but not for a computer. This is
remarkable, but not non-sensical. Even more typical programs involve a user. The
user provides input, evaluates the state of the computer, and possibly their
observation influences their decision-making, thus altering the next input of the
user.

Thus, it is appropriate to consider user, task, and computer as a system of its own, a
so-called human-computer system. Despite the task is not mentioned in this
compound term, it is relevant as well. A user can perform a task without using a
computer. Introducing a computer will and usually should change how the task
is executed and it should have an impact on qualities like efficiency and efficacy.

The preceding program sketching counting with bits addresses only one actor. This
actor may be a human user or a computer. Thus, it is an example for a program
which could be executed exclusively by a computer.

– 13 –

2.4.2. Level of Detail
The steps of the first program are not very consistent with respect to their level of
detail. Level of detail means that part of the used vocabulary is well-defined, but the
rest is not. Relatively well-defined are stick and ring as objects and slip and remove
as well as remove all as operations. The terms house, room, person, see, go to next
room, enter house, and leave house have no explicit definition at all. Their use relies
exclusively on the conception a presumed user has in mind.

A program for a computer may only use vocabulary which is known to the
computer, that is, either it is part of the programming language used to instruct the
computer, or precise definitions must be provided elsewhere, for example, being
part of the program itself or residing in a library, which is accessible to the program.
A library can be considered as a collection of reusable program units for a specific
purpose.

2.4.3. Program and Reality
As outlined before, humans carry out tasks in real life – without a computer. If a
computer is used for executing the task it becomes also part of reality. A program
running on the computer usually refers to some part of the reality outside the
computer, but in the context of the task. In the first program, this is the number of
people in a house. In the digital-counter computer, this number is represented using
a memory of 16 bits.

16 bits cannot represent an arbitrary large number, but in most practical cases 16
bit are sufficient. If the computer had to explore the house by itself, the house and
its various rooms including people, must be represented in the computer as well. In
this case the programmer has to decide which data exactly and with which
structure it has to be represented. This representation has to keep track of the
rooms in the house, maybe how these rooms are connected to each other, and about
the number of people in the rooms. Probably it would not record the physical
dimensions of the house and its rooms or weight and age of people in a room.
Hence, this representation is an abstraction of reality. It simulates a certain aspect of
reality, but it does not emulate reality.

Figure 5 shows the photograph of a doll house. It is only a two-dimensional color-
image of a model of a true house with rooms and people in it. But it gives an idea of
a real house.

– 14 –

Figure 5: Doll house (By diepuppenstubensammlerin from Ruhrgebiet Deutschland - 1974 OKWA dolls house,
CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=25946023)

Table 6 presents a possible abstract representation of it, which consists of 11
integers, comprising 8 bits each. The first number represents the number of rooms
of the house. It does not discern between various kinds of rooms, such as normal
room, staircase, balcony, or gallery. Each following number represents the number
of people in a room. It does not differentiate between adults and children or sex.

This representation is relatively flexible. The format of an integral number is fixed
and the first integral number tells how many integral numbers follow.

Description Representation

Number of rooms (including 2 staircases, 2 balconies, 1 gallery) 0000 1010

People in room 1 (lower left) 0000 0000

People in room 2 (lower right) 0000 0000

People in room 3 (stair between rooms 1 and 3) 0000 0001

People in room 4 (middle left) 0000 0001

People in room 5 (middle right) 0000 0010

– 15 –

https://commons.wikimedia.org/w/index.php?curid=25946023

Description Representation

People in room 6 (right balcony) 0000 0000

People in room 7 (left balcony) 0000 0100

People in room 8 (upper left) 0000 0000

People in room 9 (stair between room 5 and gallery) 0000 0000

People in room 10 (gallery) 0000 0000

Table 6: Abstract representation of the doll house in tabular form

2.4.4. Turing-Completeness
Alan Turing wrote a fundamental paper about computable numbers (Turing, 1937).
A computable number can be computed by a computable function. A computable
function defines how to compute that number. The program for adding 1 to an
integral number described in Section Porting the Program , is an example of a
computable function. Another example is the well-known definition of the factorial
of an integer n:

factorial (n)=n⋅factorial (n−1)
factorial (0)=1

As an example, Turing proved that any function of an integral variable with a
recursive definition is a computable function. This also applies to functions which
are defined by using computable functions. The preceding function factorial is an
example of a function with a recursive definition, or in short, a recursive function.
A recursive function makes use of itself in its definition. In the first part of the
above definition, the factorial function calls itself to compute values above 0. The
second part is a specialization for the value 0, which also terminates the recursion.

Furthermore, Turing conceptualized a universal machine being able to compute any
computable function. Roughly, this machine corresponds to a tape which begins at
the left and extends endless to the right. It contains programming instructions and
data encoded in some alphabet. Another essential component is a read/write head
which can be positioned arbitrarily on that tape. The instructions on the tape refer
to the operations read, write, and moving the read/write head. According to these
instructions the read/write head is moved across the tape, reads data from or writes
data to the tape. This way, data or instructions already present on the tape, can be
altered, that is, they can be overwritten or deleted.

This universal machine cannot be built in reality, because it requires an endless
tape. Furthermore, it could take endless time processing a tape. Hence, a real
computer can compute either only a limited range of numbers accurately or it

– 16 –

can approximate computable as well as other numbers with limited accuracy
and range. Doing so, may require a long, but finite time.

Today, a set of operations which can represent computable functions is said to be
Turing-complete. In fact, such a set of operations plus the rules to combine these
operations constitute the language in which a computer can be programmed. From
a formal point of view, all programming languages, which are Turing-complete,
have the same expressive power. That means, each Turing-complete programming
language can be used to represent any computable function – within the practical
restrictions mentioned before.

Both, the Universal Turing Machine and Turing-completeness, have fundamental
implications for programming:

1. Any computer of the class of computers being as powerful as a
Universal Turing Machine can emulate any other computer of this class.

2. Any problem with a computable solution can be represented using any
Turing-complete programming language.

It has to be kept in mind, that the phrase problem with a computable solution is in
practice generally restricted by limitations of space and time.

2.4.5. Abstract Machines
As it was already introduced in Section An Infinite Design Space , an abstract
machine defines an idealized computer in terms of its operations, its inputs, and its
outputs. As such, a Universal Turing Machine is an abstract machine. One possible
implementation of an abstract machine is a real computer, that is, hardware.
Another possibility is its implementation as a program which is executed by another
abstract machine. This way, an abstract machine emulates another abstract
machine, which has been mentioned before in Section Emulation of a Computer .

In reality, a program which runs on an abstract machine must be eventually
executed on a hardware computer. This way, a large gap between problem space
and solution space can be bridged by stacking abstract machines, each representing
a manageable step from problem to solution space.

Basically, a programming language can be considered as an abstract machine. From
this point of view, C++ is a computer whose operations and rules for combining
them correspond to the programming language C++.

For those, more deeply interested, (Diehl et al., 2000) provides an overview of
abstract machines for implementing programming languages.

– 17 –

3. First Programs

3.1. Preparations
Writing and executing a program requires the following steps:

1. Editing the program text, that is, writing and formatting it.
2. Compiling the program text into an executable program.
3. Executing the program.

The first step requires a text editor which can produce plain text. Plain text means,
the text contains no additional formatting information and it is saved as pure ASCII
characters. Figure 6 shows a source program in a plain-text editor.

Figure 6: Source program in a plain text editor

Different platforms provide different editors for this purpose. For example, macOS
provides TextEdit, Ubuntu gedit, and Microsoft Windows notepad.exe. How to use
these editors is not explained here. Furthermore, there are many more editors
especially designed for editing programs, either stand-alone or being integrated in a
development environment. An example of a powerful, portable, open source editor
is Vim (https://www.vim.org). For editing the first programs one of the simple editors
mentioned before will suffice.

As a compiler g++ is a good choice. It is open source and available for many
platforms. It is the responsibility of the readers to inform themselves how to install
it on their computer, and to actually install it.

A console window is required to execute the binary program. The operating system
of the computer will provide at least one program opening a console window. Again,
the readers should inform themselves which console window is available and how
to operate it. Figure 7 shows a console window on a Unix-based operating system.
Running the ls command displays the contents of the working directory. Then, the
command g++ is executed to compile the source program ValuesPerByte.cpp to the
binary program a.out. After that, the contents of the directory are displayed again

– 18 –

https://www.vim.org/

with ls. Finally, the binary program a.out is executed by entering ./a.out and
pressing the Return key. The dot in ./a.out refers to the current directory that
contains a.out, and the slash separates the directory from the name of the program.

Figure 7: Console-window

Another option is to search the internet for a C++ compiler which runs in a web
browser. There are various web-sites which allow to enter program text and
compile/execute it immediately. This covers all the three steps mentioned above and
may be the easiest option for the start (Figure 8).

Figure 8: Source program in a browser window; previously “Run” was pressed

– 19 –

Both possibilities are illustrated above. Subsequently, these steps will be addressed
explicitly only for a specific purpose.

3.2. Values per Byte
A bit is the smallest and as such the elementary information unit. It has only two
values, either 0 or 1. A byte is a larger information unit which comprises 8 bits. The
program in Listing 1 computes, how many different values can be represented using
1 byte. It performs the necessary computations and outputs the result in a console
window.

1 // ValuesPerByte by Ulrich Eisenecker, July 2, 2020
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 << endl;
9 return 0;

10 }

Listing 1: ValuesPerByte.cpp

3.2.1. Comments
The first line of Listing 1, // ValuesPerByte by Ulrich Eisenecker, July 2,
2020, is a comment. A comment is not processed by the compiler. It contains either
information for the programmer or other programs that are able to process special
comments (more on this later). The first form of a comment in C++ begins with //
and stops at the end of the line. The second form of a comment in C++ begins with
/* and stops with the next matching */. This form of comment can be embedded in
a single line or extend over several lines. Comments in C++ cannot be nested.

3.2.2. Whitespace
Lines 2 and 5 of Listing 1 are empty lines. An empty line has no effect. Empty lines
help to structure a source program visually, making it easier to read and to
comprehend for the programmer.

Empty lines, spaces, and tabs are examples of the so-called whitespace. Whitespace
is used to separate elements of a C++ program and improve its presentation for the
human reader. It is not processed by the compiler.

– 20 –

3.2.3. #include Directive
Line 3 of Listing 1, #include <iostream>, includes another file with program text
required to use a library for input and output.

C++ consists of a language core and libraries. The source program of a library is
written in C++. A library does not extend the C++ programming language, but it
provides new functionality for a selected purpose. There are many libraries which
are defined in the C++ standard as well as a wealth of non-standard libraries. The C+
+ standard is defined by the International Organization for Standardization. The
current standard is informally referred to as C++20.

Each line starting with the character # (after optional whitespace) is processed by a
special tool, the preprocessor. The preprocessor runs before the compiler and its
output is fed to the compiler. The #include directive includes another text file as if it
were an immediate part of the including text file.

From C++20 onwards, the inclusion of header files for the use of libraries is replaced
by the import of modules. As modules are currently not sufficiently supported by
compilers and libraries have not been converted into modules, modules are not
introduced in this text, but the inclusion of header files is used throughout.

The need for the preprocessor will be eliminated by the upcoming C++ standards.
Hence, it will be explained only up to the extent which is required to understand the
programs presented in this introduction.

3.2.4. Namespace
Everything provided by a library of C++ is wrapped in a so-called namespace.
Namespaces are provisions for avoiding different definitions of the same name. For
standard libraries the namespace std is used. Some standard libraries make even
use of special namespaces nested in the namespace std.

The line using namespace std; imports everything of the namespace std, so that it
can be used without additional measures subsequently. This line corresponds to a
statement in the C++ language. As such it must be terminated with a semicolon.

3.2.5. main() Function – First Information
In line 6 of Listing 1 int main() starts the definition of a function called main().
Functions are a central concept in C++. A function is the smallest encapsulated unit
of a program. It optionally accepts parameters, performs something, e.g., a
computation, and optionally returns a result. While main is the name of the
function, the subsequent pair of matching parentheses embraces the parameters

– 21 –

which are passed to the function. There are no parameters here, that is, this
function has no parameters. The function does return a result, which is a signed
integer. This is indicated by the preceding int, which is the name of a built-in type
of the C++ programming language. It is a convention to refer to a function by its
name followed by a pair of parentheses, for example, main().

The implementation of a function is contained in a block. A block begins with an
opening curly brace, {, (line 7 in Listing 1) and it ends with a closing curly brace, },
(line 10 in Listing 1).

3.2.6. Statement
The line cout << 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 << endl; (line 8 in Listing 1)
contains a statement. As such, it is terminated with a semicolon. Here, the statement
contains several operations. First, 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 is examined.
This is an expression with seven occurrences of the operator *, which represents
multiplication. The multiplication operator takes two numerical values as operands
and computes the result. Evaluating the first occurrence of 2 * 2 gives the value 4,
which is subsequently multiplied with 2. The last operation is to multiply 128 with 2,
resulting in the value 256. Rewriting the entire line using this computed value yields
cout << 256 << endl;. cout is a so-called object. It represents the standard output.
The standard output is a stream of characters which is usually tied to a console
window. cout is the left operand of the << operator. This operator sends a textual
representation of its right operand to the output stream. Here, the right operand is
an integer value. Thus, executing this line has the effect of outputting 256 in the
console window. Interestingly, the output operator, also known as stream-insertion
operator, returns its left operand as a result of its execution, that is, executing cout
<< 256 returns cout. Hence, the next occurrence of the << operator sends again a
textual representation of its right operand to cout. In this case, the right operand is
an object named endl. This is a special object. It is a predefined so-called
manipulator which starts a new line in the output stream. For performance reasons,
streams are usually associated with buffers. endl additionally forces any buffered
output to be sent immediately to the output stream. This way, the text eventually
appears in the console window.

3.2.7. return Statement
The next statement is return 0; (line 9 in Listing 1). A return statement completes a
function. If the function promises to return a value, a return statement must specify
a value of the designated return type. Here, the main() function returns 0, which
means that it executed successfully. Return values of main() larger than 0 indicate
errors, but it is not defined, which error is associated with which value. Returning a

– 22 –

value indicating an error is a special convention for the main() function. It does not
apply to functions in general. It is possible to omit the return statement in main(). In
this case, main() automatically returns 0 on exit. This option only applies to the
main() function.

A function returning the type void returns nothing. Such a function is exited either
explicitly by return; or implicitly if there is no more statement to be executed.

A function may have more than one exit. But it is considered a good programming
style to keep the number of exits small. Ideally, there is only one exit. In this way,
the function is easier to read, understand and analyze.

3.2.8. Wrap-Up
The first program shows some features of the programming language in which it
has been written. These features have been introduced only superficially. More
detail will be added later.

Nevertheless, this program performs a computation and outputs its result. The
computation itself is rather simple and does not reveal what it is about. By looking
exclusively at 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 it is almost impossible to tell what
is computed. That is, because the program does not convey any meaning of the
result 256. The meaning has to be told separately to the user, either in an
accompanying documentation of the program, by choosing a concise name for the
program, or by outputting the result with an explanation.

In practice, this program is of very limited use. Its result can be easily computed by
humans without additional means, and it cannot be used to compute results for
similar problems. Nevertheless, it has the advantage that it makes the computation
explicit and persistent. If necessary, it would be easy to fix an error, re-compile, and
re-run the program. It would also be simple to add another eight multiplications by
2, thus obtaining the values that can be represented using two bytes.

3.3. Values of Eight Information Units
The program shown in Listing 2 builds on the one of Listing 1. When started, it will
ask the user to input the cardinality of an information unit. The cardinality of a bit
is 2, because a single bit can assume the values 0 or 1. For a base of the genetic code
the cardinality is 4, because there are four bases in the genetic code. Cardinalities
smaller 2 are invalid. But the program does not take measures against invalid input.

1 // ValuesOfEightInformationUnits by Ulrich Eisenecker, July 15, 2020
2
3 #include <iostream>
4 using namespace std;

– 23 –

5
6 int main()
7 {
8 int cardinality;
9 cin >> cardinality;

10 cout << cardinality * cardinality *
11 cardinality * cardinality *
12 cardinality * cardinality *
13 cardinality * cardinality
14 << endl;
15 return 0;
16 }

Listing 2: ValuesOfEightInformationUnits.cpp

3.3.1. Variables
To allow the input, a new concept is introduced, namely a variable. In C++, a
variable is a typed memory location that usually has a name. The line int
cardinality; in Listing 2 defines the variable named cardinality being of the type
int. As mentioned before, int is a predefined built-in fundamental type for
representing signed integers with a limited range. The memory required by
cardinality is automatically allocated. The name of a variable must follow the
naming scheme for identifiers in C++. That is, it must start with an alphabet character
or underscore. Following characters can be alphanumeric characters and
underscore. However, user-defined identifiers should not start with an underscore,
because these names are reserved by convention.

3.3.2. Input
The statement cin >> cardinality; performs the input. cin is an object, just as
cout. It represents the standard input. The standard input is a stream of characters
which is usually tied to a console window. cin is the left operand of the >> operator.
The right operand of >> is the variable cardinality. The >> operator extracts as
many characters of the input stream as required and as possible to build a value of
the variable’s type. Afterwards, the >> operator converts the extracted characters
into a value of the required type and assigns it to its right operand, that is, the
variable. Executing this line has the effect that the program waits for a valid input,
e.g., 2. Usually, an input is terminated by pressing Enter or Return on a keyboard.
Entering syntactically wrong input, e.g., alpha-characters, causes an error. How to
address this issue will not be explained here. How to cope with semantically
inappropriate input, e.g., 0 or 1 in this case, will be explained later.

As result of its execution the >> operator returns the left operand, that is, cin.
Principally, this way further inputs can be realized, for example cin >> variable1
>> variable2;.

– 24 –

3.3.3. Ignoring Return Values
An interesting question is, what happens, if the result which an operator or a
function returns, is not used? The answer is: it is simply ignored. This is nice, if the
result is not needed, but it may be harmful, if it should be used, but it is not.
Fortunately, there is a possibility to control this more precisely. If a function is
declared with the attribute [[nodiscard]] or [[nodiscard("reason")]] the
compiler issues a warning if the result of the function invocation is ignored.

3.3.4. Line vs. Statement vs. Expression
A line is of minor syntactical importance. The compiler reports errors with respect
to the line number, where it detects the error. A line is also important for the
preprocessor. For example, the comment starting with // extends until the end of
the line. Lines are important for humans, because they visually structure the source
program.

A statement performs something. It can declare a variable, it can import the
identifiers of a namespace, it can execute computations using operators or function
calls. A statement may be elementary, such as using namespace std;, which is also
called a simple statement. A compound statement is a block enclosed in curly braces,
which can contain any number of statements. An expression statement executes at
least one function or operator, but ignores the result. cin >> cardinality; is an
example for an expression statement. Evaluating the expression yields the result
cin, which is ignored by terminating the statement with a semicolon. Eventually,
there is the null statement, also known as empty statement. It consists simply of a
semicolon. The compiler processes it, but produces no code for it.

An expression executes a function or an operator or a combination of them. As such,
a statement may contain an expression.

A statement or an expression may span over more than one line. In the program of
Listing 2 the expression statement producing the output spans over five lines. It
contains arithmetic sub expressions as well as sub expressions for producing the
output.

In general, there is no relation between lines and statements or expressions.

Interestingly, with the exception of lines with preprocessor statements, a C++
program can be written in a single line. Of course, this makes it difficult to read and
understand the program. Hence, one should refrain from writing such source
programs.

– 25 –

3.3.5. Sequence
This program shown in Listing 2 is executed statement by statement in a strictly
linear order, which also applies to the program of Listing 1. Statements that are
executed one after the other form a so-called sequence. A sequence is one of the
mandatory features of the imperative programming paradigm. Executing a sequence
results in one linear execution path. Since the only function of this program is
main() the whole program maps to a linear execution path.

3.3.6. Wrap-Up
The program in Listing 2 introduces two important features of a programming
language, namely variable and identifier. Obtaining some input is not a new
language feature. It is another instance of applying an operator as seen before, e.g.,
using the << operator.

A variable increases the potential uses of the program. Instead of always computing
the same value, it now computes values depending on some runtime input. The
name of the variable was chosen to convey some of the meaning in the context of
the given problem. Thus, cardinality is much more meaningful for a human than
any literal value, e.g., 2. But the meaning of the number of occurrences of the
operator for multiplications is only part of the filename of the source program. How
to improve this, will be addressed later. Another issue is, that the program accepts
values as input for which the subsequent computation is not meaningful. Of course,
it could be argued, that with cardinality 0 only 0 values can be represented or that
with cardinality 1 only 1 value can be represented. For a human user it would be
more helpful to be informed, that these values are not useful. How to do this, will be
addressed in the next section.

A sequence, which results in a linear execution path, was explicitly mentioned for
the first time.

3.4. Values of Eight Validated Information Units
The program in Listing 3 is a revision of the program shown in Listing 2. It checks
for invalid values for cardinality and takes measures if necessary. Furthermore, it is
more verbose with respect to informing the user.

1 // ValuesOfEightValidatedInformationUnits by Ulrich Eisenecker, July 15, 2020
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int cardinality;

– 26 –

9 cout << "Cardinality of information unit (must be >= 2): "
10 << flush;
11 cin >> cardinality;
12 if (cardinality < 2)
13 {
14 cerr << "Cardinality of information unit must be >= 2!\n"
15 << "Program terminated."
16 << endl;
17 return 1;
18 }
19 cout << cardinality * cardinality *
20 cardinality * cardinality *
21 cardinality * cardinality *
22 cardinality * cardinality
23 << " different values can be represented."
24 << endl;
25 return 0;
26 }

Listing 3: ValuesOfEightValidatedInformationUnits.cpp

3.4.1. flush
In lines 9 and 10 of Listing 3 the user is informed about the expected input. First, a
string is sent to cout which informs the user about the expected input. Next, flush
is sent to cout. As endl it is a manipulator. Sending flush to an output stream
empties the buffer associated with the output stream, but it does not start a new
line.

Sending flush to cout is not strictly necessary here, since the following input
operation to cin automatically flushes the buffer associated with cout. This does not
necessarily apply to other streams as well, and has no negative consequences other
than a minimal loss of performance. Therefore, it is handled this way throughout
this text.

3.4.2. Escape Sequences
The first string sent to cerr includes ‘\n’ at its end. This sequence of two characters
represents a special character. Such special characters have either special effects or
special meaning. Here, ‘\n’ represents the control character linefeed. Inserting it
into a text starts a new line. Other examples are ‘\t’, which inserts a horizontal
tabulator.

Special characters are represented by so-called escape sequences. An escape
sequence always starts with \ followed either by a normal character or by a
sequence of characters representing a numeral value.

In C++, strings are always included in a pair of double quotes, ””. Single characters
are included in a pair of single quotes, ’’. This also applies, if an escape sequence is
used to represent a character, for example, ’\n’.

– 27 –

To represent a double quote in a string, one also must use an escape sequence, that
is ‘\”’. To represent a single quote as a character or as part of a string one must use
the escape sequence ‘\’’. The character ‘\’ itself is to be represented as ‘\\’. For
example, to output the string \My name is "Jordan", not 'Morgan'.\ (including the
backslashes) the following statement is required:

cout << "\\My name is \"Jordan\", not \'Morgan\'.\\" << endl;

3.4.3. ‘\n’ vs. endl
There are several ways to insert new lines into an output stream. The first has
already been introduced, namely sending the manipulator endl to the output
stream, for example cout << "Yours sincerely," << endl << "Taylor" <<
endl;. As mentioned earlier, endl inserts a newline character into the output stream
and forces the internal buffer associated with the output stream to actually be
written. This causes a slight overhead that can become noticeable when a plethora
of output operations is performed with endl. The second option is to insert the
newline character directly into the string to be output later, for example cout <<
"Yours sincerely,\nTaylor" << endl;. This avoids the overhead of flushing the
output buffer more often than necessary. The resulting effect in the output stream is
exactly the same. For this reason, several sources, e.g. (Breymann, 2023), p. 108, and
(C++ Core Guidelines, n.d.), recommend avoiding the superfluous use of endl in
general and using '\n' instead. In this text, this recommendation is followed only if
the newline character is conceptually really a part of the respective string. That is,
sending endl to the output stream would split a string into two parts that would
otherwise naturally be a single string. In all other cases in this text, endl is sent to
the output stream, since the corresponding strings are considered to be standalone
strings. Regardless, no example programs occur in this text where outputting endl
on an output stream would result in a relevant performance penalty compared to
using '\n' as part of a string.

3.4.4. if Statement
Another novelty is the if statement. It begins in line 12 of Listing 3 and spans up to
and including line 18. An if statement consists of a condition and a sub-statement.
The condition is any expression which evaluates to a Boolean value or whose value
can be automatically converted to a Boolean value. In C++, a Boolean value is
represented by the built-in fundamental type bool. A Boolean value is either true or
false. It may be automatically converted to the int values 1 or 0 if required. If
necessary, any integer value other than 0 is automatically converted to true, while 0
is converted to false.

– 28 –

The sub-statement may be a single statement or a compound statement, i.e. it is a
block enclosed in curly braces. It is only executed if the condition evaluates to true.

In the present case it is a compound statement. A compound statement has not to be
ended with a semicolon. The compound statement outputs an error message and
exits the function main(), returning 1. This value greater than 0 indicates that some
error has occurred.

The if statement used in the program is one of two variants. The second variant is
the if-else statement which requires another sub-statement after the keyword else.
This sub-statement is executed, if the condition evaluates to false. Table 7 shows
the schemas of the two if statements.

if statement if-else statement
if (condition)
 single statement;

if (condition)
{
 statement;
}

if (condition)
 single statement;
else
 single statement;

if (condition)
{
 statement;
}
else
{
 statement;
}

Table 7: Schemes of if statements

Some programmers recommend to use if and if-else always in combination with
compound statements as sub-statements. This helps to avoid programming errors
due to inappropriate semicolons. Additionally, the compound-statement can be
more easily extended.

The statement after if is also called if branch, the statement after else is called else
branch.

This program of Listing 3 has two possible execution paths. The first is when the if
condition evaluates to true, the second is when it evaluates to false. If the
condition is true, the if branch is executed, which terminates the program with
return 1;. Otherwise, the program continues with the statement immediately after
the if statement.

– 29 –

3.4.5. Flowchart
The flowchart in Figure 9 gives a simplified graphical representation of the
program. Symbols and syntax of flowcharts are explained in, e.g., (“Flowchart,”
2021).

Figure 9: Flowchart of the program shown in Listing 3

The diagram of Figure 9 omits some details, for example, outputting a string asking
for input or computing the result. To emphasize that it returns different values as
result of function main(), two separate process symbols have been used.

Furthermore, the flow lines leaving the decision symbol are labelled true and false.
In fact, the if branch of the program terminates the program when the condition
evaluates to true. There is no else branch in the case the condition evaluates to
false.

Of course, more endeavor could have been spent to make the program and the
flowchart more consistent. In this case, the question is which one should be
adapted, the flowchart or the program. Eventually, it often turns out that diagram
and program cannot be made perfectly congruent without tweaking the structure or
even semantics of one or the other. Thus, it is advisable to treat a diagram as a
means to provide a coarse sketch of the program design to understand it or explain
it to others.

– 30 –

Begin

Cardinality
< 2?

Input
cardinality

Output
result

return 0

End

Output
error

return 1

true

false

3.4.6. Relational Operators
For all built-in numerical types, C++ defines relational operators, namely < (smaller
than), <= (smaller than or equal to), == (equal to), != (not-equal to), >= (larger than or
equal to), and > (larger than). Each relational operator compares two numerical
values. It returns either true or false as result. Furthermore, relational operators
may be also defined for non-numerical types. The relational operators are
complemented by the three-way comparison operator, <=>, also known as spaceship
operator (because of its visual appearance). It has been introduced since C++20. To
use it, the header <compare> must be included. It compares two objects
lexicographically and returns a common category type as result. When available, it
makes the definition of the other relational operators <, <=, >=, and > obsolete.

3.4.7. Standard Error Streams
cerr is – like cin and cout – an object representing a standard stream. cerr is the
standard error stream, which is also connected to the console, but not buffered. Any
output sent to it is immediately written to the stream. This is essential if an error
crashes the program. Only then the user has a chance to see the error message in
the console. An alternative to cerr is clog. clog is much the same as cerr, but it is
buffered. Hence, error messages sent to clog may be lost when the program
crashes.

3.4.8. Wrap-Up
The most important novelty is the if statement. In the concrete case it allows to
detect syntactically correct, but semantically invalid input and to react accordingly.
In general, it allows to write many more flexible programs. This will be pursued
subsequently.

Moreover, the program in Listing 3 has become more verbose again. The user is
informed about the expected input, invalid input, and the meaning of the computed
value (line 23).

3.5. Values of Information Units
Listing 4 shows an even more flexible version of the preceding program. It allows to
specify any number of bits and computes the number of values, which can be
represented with it.

1 // ValuesOfInformationUnits by Ulrich Eisenecker, July 23, 2020
2
3 #include <iostream>

– 31 –

4 using namespace std;
5
6 int main()
7 {
8 int cardinality;
9 cout << "Cardinality of information unit (must be >= 2): "

10 << flush;
11 cin >> cardinality;
12 if (cardinality < 2)
13 {
14 cerr << "Cardinality of information unit must be >= 2!\n"
15 << "Program terminated."
16 << endl;
17 return 1;
18 }
19
20 int number;
21 cout << "Number of information units (must be >= 1): "
22 << flush;
23 cin >> number;
24 if (number < 1)
25 {
26 cerr << "Number of information units must be >= 1!\n"
27 << "Program terminated."
28 << endl;
29 return 2;
30 }
31
32 int values = 1;
33 while (number > 0)
34 {
35 values = values * cardinality;
36 number = number - 1;
37 }
38
39 cout << values
40 << " different values can be represented."
41 << endl;
42 return 0;
43 }

Listing 4: ValuesOfInformationUnits.cpp

3.5.1. At First Glance
The program has grown considerably. It is difficult to view and understand it in its
entirety. Therefore, empty lines have been inserted to structure the source program
into parts that are semantically relevant to the human programmer.

Probably the size of the program is at the borderline of the average cognitive
capacity of human programmers. Most of the programming concepts introduced
afterwards have the purpose to structure a complex program into smaller chunks. It
is much easier for a programmer to read, understand, analyze, and maintain a
small chunk of code in relative isolation.

The code sections asking for cardinality and number of information units share
many commonalities. They differ only with respect to the name of the variable, the
if condition, and the return value.

– 32 –

Computing the number of values introduces some new features. First, the explicit
initialization of the value of a variable, the while loop, and the assignment operator,
=.

3.5.2. Initialization of Variables
The two preceding programs define the variable cardinality. The statement int
cardinality; declares the variable cardinality of type int and automatically
allocates memory for it. In the following, the term object is used to refer to variables
of any type without regard to where in memory they are located. This usage of the
term object is not exactly the same as object in object-oriented programming, but
there is a considerable overlap in meaning. Declaring an object and allocating its
memory, means to define this object. Despite the fact that the object has just
been defined, it has no defined value afterwards. A variable should not be
read before a value is assigned to it. A value can be assigned to a variable, for
example, by extracting a value from the standard input and assigning it to the
variable. A definition without any arguments is conceptually equivalent to
executing a standard constructor, also called default constructor.

Furthermore, it is possible to initialize an object when it is being defined, a so-called
copy initialization. This can be done using the syntax int values = 1; or – fully
equivalent – int values(1);. After a copy initialization the object has the provided
value, here 1. A copy initialization with a value of the same type as the constructed
object means conceptually to execute a copy constructor.

Another possibility for initialization is to use an initializer list, here int values { 1
};. In the context of an object definition an initializer list encloses none, one, or
more values used for initialization in curly braces. In the given example, the
statement int values { 1 }; is equivalent to execute the copy constructor.

The empty initializer list, { }, is the so-called zero initializer. It initializes integral
variables to 0, floating point variables to 0.0, and other types by invoking their
standard constructor.

It is highly recommended to use initializer lists. There is also strong advice to avoid
objects which are not initialized. Defining objects with the zero initializer is a viable
measure to achieve this. For example, in the program of Listing 4, the statement int
cardinality; would have to be rewritten as int cardinality { }; to follow this
recommendation.

Each constructor that can be called automatically if an object of a specific type is
expected, is a so-called converting constructor (Converting Constructor -
Cppreference.Com, n.d.).

– 33 –

It should be noted that whenever a value is expected, any expression evaluating to a
value of the desired type can be used. The statement int values { 2 * 5 – 9 };
gives the same result as int values { 1 };.

Uninitialized objects can cause errors which are difficult to detect. For example, int
i; creates a valid integer object, but without a defined value. If it is used in a
computation without prior assignment, such as cout << (i * 10) << endl;, the
result is unpredictable and may be different each time the computation is
performed. Hence, it is recommended to always initialize an object when defining it.
To achieve this, in Listing 4 line 8 would have to be rewritten as, for example, int
cardinality { 0 }; or – even shorter – int cardinality { };. Of course, this is
only useful if the initialization value allows a valid execution of the subsequent
program parts, or if it is checked whether the object is initialized with a certain
value.

3.5.3. while Loop
A while loop starts with the while keyword, followed by a condition enclosed in
parentheses and a statement, which can be a compound statement. The condition is
any expression that evaluates to a Boolean value. When the condition is true, the
subsequent statement is executed. Otherwise the program continues with the
statement that follows the while loop. Since the while loop checks the condition
first, the statement may not be executed at all.

To prevent a while loop from executing forever, either in its condition or in its
statement a part of its condition must be altered such that the condition eventually
evaluates to false. Here, the condition of the while loop is number > 0. As part of its
compound statement, number = number - 1; is executed. This statement has the
effect that in each iteration of the while loop result is decremented by one. Thus,
after a certain number of repetitions result is guaranteed to become 0. In this case
the condition evaluates to false and the while loop is no longer executed.

There are more looping constructs which will be discussed later.

3.5.4. Assignment Operator
The statement number = number - 1; makes use of the assignment operator, =. It
has to be emphasized, that this is not an initialization of the variable number,
because it is not declared in this context. Furthermore, the = operator should not be
confused with the relational operator, ==, testing for equality. Indeed, the statement
should be read as compute the actual value of number minus 1 and assign the result to
number.

– 34 –

Assigning a value to a variable is the usual way to change the state of a program in
the imperative programming paradigm. Usually, an imperative program starts in an
initial state. Then it executes commands performing computations and
manipulating variables until a desired goal state is reached. Afterwards the
program stops. Of course, there are programs which run forever until interrupted,
for example, a program measuring temperature and switching on a heater if the
measured temperature is below a threshold or switching it off when temperature is
above.

3.5.5. Control Structures
All programming languages belonging to the imperative programming paradigm
have three mandatory so-called control structures:

1. Sequence – statements of a sequence are executed in linear order.
2. Branching construct – depending on a condition some code is executed or not.
3. Looping construct – depending on a condition a statement is executed

repeatedly.

Any imperative programming language that has at least one variant of each of these
control structures is considered Turing-complete in a practical sense. That is, the
compound statement, the one-way if statement, and the while loop can be used to
implement any algorithm that can be implemented by any other Turing-complete
programming language.

In view of this, the introduction to programming could be finished now – if it were
only a matter of developing programs for computers!

However, this is not the case. A computer executing a program has no idea of its
meaning. But human programmers who develop and maintain a program
essentially rely on the meaning conveyed by identifiers, selected constructs, and
comments. Important properties of a program are thus:

• It is easy to read.
• It is easy to analyze.
• It is easy to adapt to changing requirements.
• It is easy to integrate new requirements.

These qualities depend largely on additional means and concepts that facilitate or
ensure the writing of programs that exhibit these properties. In addition, powerful
programming concepts allow us to implement abstraction layers that can perform
domain-specific optimizations that would otherwise be impossible to achieve.

These are the reasons why most of this introduction to programming is still ahead.

– 35 –

3.5.6. Wrap-Up and Outlook
So far, all the constitutive features of the imperative programming paradigm have
been introduced, namely variables, reading variables, assigning values to variables,
calculating and the three mandatory control structures sequence, branching, and
looping. Together, these components form a Turing-complete programming
language. However, the program in Listing 4 suggests that developing programs
with thousands of lines of code using these resources only is insufficient for human
developers and does not support the above qualities.

When programs are no longer developed by humans, these qualities become less
important, for example, when an artificial neural network optimizes a source
program with respect to some functional criteria. The resulting source program
may be incomprehensible to human experts, but outperform any other human-
developed program. (Karpathy, 2017) outlines a corresponding approach to
software development which he calls Software 2.0. However, with the advent of
large generative language models such as ChatGPT (ChatGPT, n.d.), this has once
again changed dramatically. They are able to generate well-formatted,
understandable programs based on natural language specifications. Usually, these
programs can also be compiled without errors. Nevertheless, they need to be
thoroughly checked and tested, as they sometimes contain subtle errors that are
difficult to detect. It is a common practice to use them as coding assistants.

The next section introduces a fourth but optional construct of imperative
programming: the procedure and procedure call. They are called function and
function call in C++.

3.6. Functions
The visual structure of the program shown in Listing 4 reflects its semantic
structure:

1. Input cardinality
2. Input number of information units
3. Calculate number of representable values
4. Output representable values

To facilitate understanding, this structure could be recorded in the form of
comments before the corresponding lines of code. An example is shown in Listing 5.

1 // Input cardinality
2 int cardinality;
3 cout << "Cardinality of information unit (must be >= 2): "
4 << flush;
5 cin >> cardinality;
6 if (cardinality < 2)
7 {

– 36 –

8 cerr << "Cardinality of information unit must be >= 2!\n"
9 << "Program terminated."

10 << endl;
11 return 1;
12 }
13 // ...

Listing 5: ValuesOfInformationUnits.cpp with comment (excerpt)

Another possibility is to convert the corresponding code sections into functions.
Listing 6 shows the result.

1 // ValuesOfInformationUnitsWithFunctions by Ulrich Eisenecker, August 8, 2024
2
3 #include <iostream>
4 using namespace std;
5
6 int inputCardinality()
7 {
8 int cardinality { };
9 do

10 {
11 cout << "Cardinality of information unit (must be >= 2): "
12 << flush;
13 cin >> cardinality;
14 if (cardinality < 2)
15 {
16 cout << "Illegal value – please, retry!"
17 << endl;
18 }
19 }
20 while (cardinality < 2);
21 return cardinality;
22 }
23
24 int inputNumberOfInformationUnits()
25 {
26 int number { };
27 do
28 {
29 cout << "Number of information units (must be >= 1): "
30 << flush;
31 cin >> number;
32 if (number < 1)
33 {
34 cout << "Illegal value – please, retry!"
35 << endl;
36 }
37 }
38 while (number < 1);
39 return number;
40 }
41
42 int calculateRepresentableValues(int cardinality,int number)
43 {
44 int values { 1 };
45 while (number > 0)
46 {
47 values = values * cardinality;
48 number = number - 1;
49 }
50 return values;
51 }
52
53 void outputRepresentableValues(int values)
54 {

– 37 –

55 cout << values
56 << " different values can be represented."
57 << endl;
58 }
59
60 int main()
61 {
62 int cardinality { inputCardinality() };
63 int number { inputNumberOfInformationUnits() };
64 int values { calculateRepresentableValues(cardinality,number) };
65 outputRepresentableValues(values);
66 return 0;
67 }

Listing 6: ValuesOfInformationUnitsWithFunctions.cpp

3.6.1. inputCardinality() Function
A function consists of a header and a body. Here the header is int
inputCardinality(), the body is the remainder enclosed by a pair of curly braces, {
... }, that is, a block. Together, the header and the body form the definition of a
function.

The name of the function is inputCardinality. The preceding int specifies the type
of the value the function returns. The following pair of parentheses contains the
parameters that are passed to the function. Since no parameters are specified here,
the function does not take any parameters. The name of the function has a meaning
for the programmer. It says that an input is expected, and it specifies what input is
expected. Its spelling corresponds to the so-called camel-case notation. That is, it
starts with a lowercase letter and the first letter of following word is capitalized.
This is purely a convention. An alternative convention is to use only lowercase
letters and separate the words with an underscore, for example input_cardinality.
It is less significant which convention to use. But it is essential to use it
consistently.

It is another convention in written text to refer to a function name with an
appended pair of parentheses, e.g., inputCardinality(). This clarifies that this
identifier denotes a function and not something else, e.g., a variable or a type.

The body of the function is always a compound statement. The first statement inside
the body is the definition of the variable cardinality, which is of type int. The
variable exists only within the function during its execution. When the function is
exited, the variable is destroyed. Hence, it is a local variable. The name of a local
variable hides a variable of the same name which is declared in a superordinated
scope. For example, in Listing 7, the variable i in the inner block hides the variable
i of the outer block. Therefore, this code snippet outputs 99 when executed.

1 {
2 int i = 1;
3 {
4 int i = 99;

– 38 –

5 cout << i << endl;
6 }
7 }

Listing 7: Blocks and hiding identifiers with the same name (excerpt)

Next, a new loop statement is introduced, the do-while loop, or shorter, the do loop.
It consists of the keyword do, followed by a statement, and the keyword while,
which specifies a condition expression in parentheses. As long as the condition
evaluates to true, the loop repeats. If the condition evaluates to false, the loop is
exited. A do loop is executed at least once.

The actual do loop is executed as long as the value of the cardinality variable is
less than 2. The loop statement is a compound statement. First, it informs the user of
the value to enter. Then it reads the user input and stores it in the cardinality
variable. Then it uses an if statement to check whether the value of cardinality is
less than 2, and if it is, it prints an error message. Accordingly, the following
condition of the do loop is evaluated as false, and the user is prompted for input
again.

There are several points to mention:

• The if statement uses a compound statement. This is in accordance with the
previously given advice to generally use compound statements in this case.
Syntactically, a simple statement would have sufficed here.

• The error message is sent to cout, not to cerr. It informs the user about the
incorrect input. This makes sense because it is no longer an error message
explaining why the program was aborted.

• In the case of an error, neither the function is exited nor the program is
terminated. The user is repeatedly asked for an appropriate input.

3.6.2. inputNumberOfInformationUnits() Function
This function has the same structure as inputCardinality(). Therefore, no detailed
explanation is given.

3.6.3. calculateRepresentableValues() Function
The name of this function indicates that it calculates the number of different values
that can be represented using number information units of cardinality. Therefore,
cardinality and number are passed as parameters. Each parameter is specified by
its type and name, under which it is provided in the function. A following
parameter is to be separated by a comma from its preceding parameter.

Function parameters in C++ are position parameters. This means that when a
function is called, the order of the parameters must exactly match the order of

– 39 –

their declaration in the function header. It is the responsibility of the
programmer to pass the parameters in the correct order. Otherwise, the function
may be executed with incorrect values.

Sometimes a parameter declared in a function header is called a symbolic
parameter, while the actual variable or expression passed when a function is called
the actual parameter. A function that is called is also called as callee, while the piece
of code that calls the function is called a caller.

The name of a parameter is valid as long as the function is executed. Like a local
variable, it may hide an identical name in a superordinated scope.

In C++, parameters are passed by value by default. This means that the value of
the variable (or the expression) passed as a parameter is copied and the copy
is made available within the function under the name with which it is
declared in the function header. When a function is exited, a value parameter
is destroyed and no longer available. A value parameter can therefore also be
considered a local variable.

The first statement of the function calculateRepresentableValues() defines the
local variable values and initializes it with the value 1. This initialization is
necessary because in the following while loop the product of the current values of
values and cardinality is assigned as new value to values. The second statement
in the compound statement of the while loop decreases the value of number by 1. In
this way, the condition (number > 0) of the while loop is finally evaluated as false
and the while loop ends. Changing the value of number only affects the local copy of
the current parameter with which the function was called. The actual parameter
(outside the function) remains unchanged. This is a consequence of passing the
parameter number by value.

The last statement of the function returns the value of values as the result.
Conceptually, the result of a function is returned by value by default. That is, the
value of a local variable or expression is copied and the copy is returned as the
result.

3.6.4. outputRepresentableValues() Function
This function specifies its return type with the keyword void. void is a so-called
incomplete type, which means that “nothing special can be said about this type”. A
function with return type void returns nothing.

A function in C++ with the return type void corresponds to a procedure in the
imperative programming paradigm. A function returning a type other than
void corresponds to a function in imperative programming. In the imperative
programming paradigm, operation is the parent concept of function and

– 40 –

procedure. Unfortunately, almost every programming language has its own specific
vocabulary for its concepts. In general, the same term may denote different
concepts in different programming languages, and the same concept may also differ
between different programming languages.

The outputRepresentableValues() function has one parameter, values, which is
passed by value. The value of this parameter is sent to cout.

Since the function does not return a value, it simply terminates after its last
statement is executed. In fact, it would be legal to explicitly terminate the function
by adding return; as the last statement. Although this makes it clearer what is
happening, most programmers omit a superfluous return;.

3.6.5. main() Function – More Information
The first statement of main() defines the variable cardinality of type int and
initializes it with the result of the call to inputCardinality(). The name
cardinality defined in main() does not conflict with the name cardinality defined
in inputCardinality(), because the names are defined in different scopes. A scope
is a part of a program where a certain definition is available. For example, the block
of a function definition is a scope. When a block is defined within another block, it
also defines its own nested scope. Therefore, cardinality defined in main() is
different from cardinality defined in inputCardinality().

The second statement defines number and initializes it with the result of the call to
inputNumberOfInformationUnits().

The third statement defines values and initializes it with the result of the call to
computeRepresentableValues(). The variables cardinality and number are passed
as parameters to computeRepresentableValues(). Two important points should be
mentioned:

• The names cardinality and number are defined and valid in the scope of
main(). These names are no longer relevant when used as actual parameters
for the call to computeRepresentableValues(). In
computeRepresentableValues() these parameters are referred to by the
names of the symbolic parameters which have been defined in the header of
this function.

• On the caller’s site it is not apparent how the parameter is passed, e.g. by
value. This information is only available at the callee’s site, namely in the
function header, where the parameters and the way, how they are passed are
defined.

The fourth statement calls outputRepresentableValues() and passes values as
parameter to output the calculated result.

– 41 –

The last statement is return 0;. It terminates main() and returns 0 as the result,
indicating that main() terminated without error. In fact, return 0; can be omitted.
main() will always return 0 if no return statement is specified, which is only
allowed for the main() function. This is only similar but not equal to the case that a
function that returns void does need not specify a return statement at all.

Overall, main() has a clear structure. First, all the values needed for the subsequent
calculations are entered, then the desired calculations are performed, and finally
the results are printed. This structure, input – calculate – output, is shared by many
programs running in a console window.

3.7. Wrap-Up
Functions were introduced as a concept to structure a program into smaller parts
that can be referred to by a name that makes sense to the programmer. As such,
they are indispensable for writing programs that are easier for the human
programmer to understand, thus facilitating the maintenance and reuse of
program parts.

They can also provide parameters that extend their possible uses. A function can be
called with a large number of specific parameter values and, of course, with a large
number of combinations of different parameter values.

Call by value was introduced as a standard mechanism of passing parameters to
functions.

The do loop was introduced as another loop construct. It is executed at least once.

To complement this section, the activities testing and debugging are presented next.

3.8. Testing
Testing is a crucial activity in software development. A naive approach would be to
check whether a program or a part of it behaves as expected. In the case of the
program shown in Listing 6, this could mean that after entering 2 as cardinality and
2 as number of information units, it outputs 4 as different values.

But how meaningful is the result of this test? If the program outputs a result that
differs from 4, it must be faulty, assuming that the input was correct and the
calculation was correct. But how sure is it that it is error-free if it outputs the
expected result?

If the type int were represented with 16 bits, there are 216 = 65,536 different values
for each, cardinality and number. Would it be sufficient to test all values for one

– 42 –

variable and keep the other constant? The answer is no, because there are 216 · 216

different pairs of values that need to be tested for an exhaustive test. For this reason,
exhaustive tests are almost impossible in practice. Therefore, there are different
testing strategies and methods for different purposes. In the following, unit tests are
presented in more detail. Finally, regression testing and automated unit testing will
be discussed.

3.8.1. Unit Tests
The terms unit and module are often used as synonyms. When it comes to testing,
the term unit is the dominant one.

Ideally, a module can be used and understood in relative isolation. A module’s
interface should have only essential dependencies on other modules, i.e., it
should have minimal coupling. The implementation of a module should serve
exactly one clear purpose, i.e., it should have maximal cohesion. The
implementation may consist of nested modules or use other modules.

A function is the most essential unit of a program. Its header corresponds to the
interface and its body to the implementation of a module.

A unit test checks a function in isolation. Often, a minimal environment for
evaluating a function must be prepared, such as variables, or more complex data
structures. Then the function is executed with certain parameters. If expected and
actual result differ, both the function and its test are examined to find the cause of
the discrepancy. Especially if the test was written recently and executed for the first
time, the test itself may contain errors.

A special situation arises when a function creates a so-called side effect, e.g., by
assigning a value to a global variable or performing outputs and inputs to and from
external files. A global variable is a variable defined before a function in the global
scope. Global variables should be used restrictively and with the utmost care.
Examples for global variables are cin, cerr and cout. Reading values from standard
input and writing values to standard output have already been introduced. In these
cases, implementing a unit test can become difficult and requires special measures.

In the program shown in Listing 6, inputCardinality() and
inputNumberOfInformationUnits() read only one value from standard input and
return it. outputRepresentableValues() outputs only its function parameter on
standard output and returns void, that is, nothing. Therefore, no unit test for these
functions is demonstrated here.

main() is also a function that could be subjected to a unit test. However, it uses three
functions with side effects. Therefore, no unit test for main() is presented here.
Furthermore, unit tests for main() are not common. main() represents the entry

– 43 –

and exit points of a program. As such, it is rather the target of integration tests,
which will not be explained here.

calculateRepresentableValues() takes two parameters and computes the number
of different values that can be represented based on the parameters. Therefore, it is
a good candidate for unit testing.

Table 8 shows the value pairs for the test of calculateRepresentableValues() and
the expected results.

Description Cardinality Number Expected Result

Two smallest values 2 1 2

One smallest, one larger value 2 4 16

One larger value, one smallest value 3 1 3

Two larger values 3 4 81

Table 8: Expected results for testing calculateRepresentableValues()

Table 8 contains only values for Cardinality and Number that are equal to or greater
than the respective lower bounds, i.e., 2 or greater for Cardinality, and 1 or greater
for Number. Legal values that give results outside the range are not tested.

The strategy for selecting pairs of values to test here is to cover all combinations of
legal smallest and a legal larger value.

The program in Listing 8 shows a straightforward implementation of the four test
cases using only that programming constructs already presented.

1 // UnitTestOfCalculateRepresentableValues by Ulrich Eisenecker, August 8, 2024
2
3 #include <iostream>
4 using namespace std;
5
6 int calculateRepresentableValues(int cardinality,int number)
7 {
8 int values { 1 };
9 while (number > 0)

10 {
11 values = values * cardinality;
12 number = number - 1;
13 }
14 return values;
15 }
16
17 int main()
18 {
19 int passed { 0 };
20 int failed { 0 };
21
22 cout << "Unit testing of calculateRepresentableValues()\n" << endl;
23
24 cout << "Test case \"Two smallest values\" ... "
25 << flush;
26 if (calculateRepresentableValues(2,1) == 2)

– 44 –

27 {
28 passed = passed + 1;
29 cout << "passed." << endl;
30 }
31 else
32 {
33 failed = failed + 1;
34 cout << "failed." << endl;
35 }
36
37 cout << "Test case \"One smallest, one larger value\" ... "
38 << flush;
39 if (calculateRepresentableValues(2,4) == 16)
40 {
41 passed = passed + 1;
42 cout << "passed." << endl;
43 }
44 else
45 {
46 failed = failed + 1;
47 cout << "failed." << endl;
48 }
49
50 cout << "Test case \"One larger, one smallest value\" ... "
51 << flush;
52 if (calculateRepresentableValues(3,1) == 3)
53 {
54 passed = passed + 1;
55 cout << "passed." << endl;
56 }
57 else
58 {
59 failed = failed + 1;
60 cout << "failed." << endl;
61 }
62
63 cout << "Test case \"Two larger values\" ... "
64 << flush;
65 if (calculateRepresentableValues(3,4) == 81)
66 {
67 passed = passed + 1;
68 cout << "passed." << endl;
69 }
70 else
71 {
72 failed = failed + 1;
73 cout << "failed." << endl;
74 }
75
76 cout << "\nTotal test cases: " << (passed + failed) << endl
77 << "Passed test cases: " << passed << endl
78 << "Failed test cases: " << failed << endl;
79 }

Listing 8: UnitTestOfCalculateRepresentableValues.cpp

The calculateRepresentableValues() function, which is the subject of the test, had
to be copied from the original source file. Copy & paste has a long tradition in
software development, but it also has its drawbacks. If an error is found during
testing, it must be fixed consistently in both the original and the copies. Later, it will
be explained, how functions can be kept in separate files, compiled to separate so-
called object files, and finally linked to executable applications. For now, copy &
paste will have to suffice.

– 45 –

Lines 19 – 22 of Listing 8 are needed to record the number of passed and failed tests
and to inform the user about the subject of the tests. After that, the four test cases
are handled. No special code is required to prepare the tests of
calculateRepresentableValues().

All test cases have the same structure:

• The user is informed about which test case will be executed next.
• The condition of the if statement checks whether the result of the execution

of the function with the parameters of the test case equals the expected
result. For this purpose, the == operator is used, which checks for equality of
its operands.

• The if branch increments passed and informs the user that the test case
passed.

• The else branch increments failed and informs the user that the test case
failed.

At the end, the program outputs how many test cases were executed in total, how
many passed, and how many failed. Since main() does not contain an explicit return
statement, it implicitly returns 0.

Unit tests are critical for all non-trivial units of a program, e.g., functions that
perform calculations, complex input or output operations involving formatting
and/or conversions. The goal is to ensure that all relevant units of a program are
adequately tested before the program is integrated. After that, integration testing,
performance testing, load testing, robustness testing, and acceptance testing become
relevant. Only in the case of unit tests it is common for them to be written and
executed by the programmers themselves. However, unit tests must be well planned
and carefully implemented, which requires at least sound guidance or sufficient
experience.

3.8.2. Regression Tests
As a rule, unit tests should be repeated frequently, e.g. after editing the source code
or before a nightly build of the entire application. This testing strategy is called
regression testing. Regression testing is an effective way to prevent errors that were
previously fixed from reoccurring later.

3.8.3. Automated Unit Tests
The general and repetitive structure of unit tests and the need for frequent unit
tests suggest automating unit tests. There are many tools for unit testing for

– 46 –

different programming languages. Writing automated unit tests using so-called test
frameworks and executing them will be covered later.

3.9. Debugging
Testing is very useful, if not essential, for detecting bugs. However, sometimes it is
necessary to understand exactly the cause of an error or how the error propagates
through a program. There may also be cases where it is desirable to understand the
behavior of a program at runtime compared to its source code.

The activity used to understand the circumstances and consequences of an error in
a program or the exact execution of some parts of a program is called debugging. A
software tool that supports debugging a program is called a debugger. Basically,
debuggers are pure command line tools. Usually they are equipped with a graphical
user interface that makes their use more convenient.

3.9.1. From Source Code to Executable Program
After the source code of a program is completed and stored on a storage medium, it
is compiled. The compiler creates an executable program that can be run by
entering its name in a console window or by selecting and launching it in a file
manager.

The executable program is a long chain of bits. These bits represent either
instructions or data. However, there are other steps and intermediates. It is
important to know more about them for debugging.

When compiling a C++ program the following steps are performed:

• The preprocessor prepares the source code for the actual compilation.
• The compiler scans the source code for tokens, and parses it into an abstract-

syntax tree, which can then be optimized. Finally, the object code is
generated. Today, most compilers generate object code directly. If desired, a
compiler can generate a so-called assembler file, which contains assembler
instructions and data. The assembler file is processed by an assembler which
generates the object code.

• In most cases, a program contains references to other object code or libraries.
A linker takes the program’s object code and links it to other code or libraries.
There are two types of libraries that are used differently. The first type is a
static library that is statically linked to the program code. The second type is a
dynamic library that is dynamically linked when the referencing program is
executed. Each program with a statically linked library has its own instance
of the library. All programs that use a dynamic library usually share a single

– 47 –

instance of the library. A dynamic library must be installed separately and be
accessible to programs that rely on it.

• The operating system loader loads a program to a specific memory location
and can perform additional tasks. The loader is started implicitly when the
program is executed in a console window or with a file manager.

Figure 10 is an example of a hypothetical abstract syntax tree for the statement a =
(b + c) * 4;.

Figure 10: Abstract syntax tree for a = (b + c) * 4;

The assignment operator, =, has the lowest priority of all operators. It therefore
forms the top node. It has two operands, namely the variable on the left-hand side
(short: lhs), the target of the assignment, and the expression on the right-hand side
(short: rhs). Before the assignment can be made, both operands must be evaluated.
For the left operand this is easy because it is a variable. For the right operand it is
more complicated, because it is a complex expression. The parentheses have a
higher priority. Therefore, the * operator has the lowest priority and is at the top of
the subtree. Its left operand is the + operator and its right operand is the literal 4.
Finally, b and c become the leaves of +. The actual data structure of an abstract
syntax tree, which is managed by the compiler, is much more complex. It also
contains, for example, links to definitions, types, references, and uses.

Preprocessing and assembly can be viewed as further instances of mappings
between problem and solution spaces. This is illustrated in Figure 11.

– 48 –

=

+ 4

a

b

*

c

Source code Preprocessed
source codePreprocessor Assembler

source codeCompiler Binary
object codeAssembler

Figure 11: Chained mappings of problem and solution spaces

Basically, the source code is a result of mapping the problem space (application
domain) to the solution space (solution domain). The source code is first considered
as a specification in its own problem space. It contains parts that specify how it
should be transformed by the preprocessor. The preprocessor takes this
specification and creates a preprocessed source file that belongs to an intermediate
solution space. At the same time, it is also a specification of an intermediate
problem space, which serves as a specification that is processed by the compiler.
The compiler generates assembly source code, which is the closest textual
representation to binary object code. The assembly source code is in turn both a
solution in an intermediate solution space and a specification in an intermediate
problem space. Finally, the assembler performs the final conversion of the assembly
source code into the binary object code.

In this way, an extremely complex mapping from the problem space to the solution
space is decomposed into a sequence of less complex mappings. In addition, all
mapping operations from source code to object code are fully automated.
Automation of software development is essential for improving productivity
and quality.

This complexity is usually not visible to the programmer. Nevertheless, it is
indispensable to know it in order to get at least a basic understanding of what goes
on behind the scenes, for example:

• Building large software systems from individually compiled pieces of code.
• Profiling a program, i.e. examining its performance in case of problematic

resource consumption and looking for suitable optimizations.
• Debugging a program to gain a deeper understanding of the program.
• Debugging a program to find the cause of an erroneous behavior.

3.9.2. Preprocessor
In principle, a preprocessor is not dependent on a specific programming language.
However, the C and C++ programming languages are closely tied to the C
preprocessor, called cpp. In the future, the preprocessor for C++ is to become
superfluous.

A preprocessor directive begins with a hash character, #. The main categories of
preprocessor directives are source file inclusion, conditional inclusion, and macro
definition. The C preprocessor also performs macro substitution, that is, it replaces
the use of a previously defined macro with the text resulting from the expansion of
the macro. The preprocessor also removes any comment, i.e. // to the end of the
line, or any text that is between /* and */, including delimiters.

– 49 –

Thus, if a source program contains a preprocessor directive, the compiler
never sees the program as it was written by the programmer. This has a
serious consequence: The compiler knows nothing about the original source
program! It sees only the source program generated by the preprocessor.
Anything that has been modified by the preprocessor cannot be debugged
appropriately.

Normally a C++ compiler also provides the possibility to generate preprocessed
output. For example, one can open a console window, change to the directory with
the source programs presented so far, and run g++ -E ValuesPerByte.cpp. The -E
option causes g++ to perform only the preprocessing step. If no mistake was made,
the result is a very long output. This is the source program that is actually processed
by the compiler!

To preserve this output, g++ -E ValuesPerByte.cpp > ValuesPerByte.ii must be
executed, or alternatively g++ -E -o ValuesPerByte.ii ValuesPerByte.cpp. In the
console window, > redirects the standard output to the file named after it. In this
case the file is named ValuesPerByte.ii. The compiler option -o followed by a
filename specifies the name of the output file. ValuesPerByte.ii is significantly larger
than 1 MB. Therefore opening this file with a text editor may take a while. It is only
at the end of this file that most of the original program text appears. There is exactly
one line missing, namely #include <iostream>. All the text before the original
program is the result of executing this single preprocessor instruction!

3.9.3. Assembler
The first step of compilation is performed by the lexer, which is also called the
scanner. It breaks down the source program into tokens. A token is an elementary
part of a source program in terms of program syntax, for example a keyword, an
identifier or an operator.

Then the parser tries to find tokens that belong together, e.g. a statement, a function
definition, a variable definition and so on. The found constructs are inserted into
the abstract syntax tree. The abstract syntax tree (see Figure 10) is a tree-like data
structure that eventually represents the entire program. It is then unparsed directly
into machine code or alternatively into assembler source code. The assembler
source code contains data and so-called mnemonics, i.e. textual representations of
processor instructions.

Normally a C++ compiler allows the creation of an assembler file. For example, in a
console window one can change to the directory containing the source programs
presented so far and execute g++ -S -o ValuesPerByte.s ValuesPerByte.cpp. The -S
option causes only assembler language output and the -o option and the following
filename specifies the output file. ValuesPerByte.s has more than 5,000 bytes, which

– 50 –

is larger than the corresponding source file, but much smaller than the file
generated by the preprocessor. To check the file, it can be loaded into a text editor.

Of course the assembler source code can be processed further. By entering g++
ValuesPerByte.s in the console window the assembler and then the linker is
executed. Afterwards an executable file named a.out is located in the active
directory. The use of the suffix .s for the file name of the assembler source is
essential in this case.

The assembly source code is the textual representation of a program that most
closely resembles the executable binary program. If a debugger were to operate
only on assembly code, it would be almost impossible for a human to cognitively
trace the assembly instructions to the corresponding instructions in the source code.
Therefore, when compiling a program, care must be taken to ensure that the
required source code is also included. With g++, for example, the -g option serves
exactly this purpose. If one executes the line g++ -g ValuesPerByte.cpp in a console
window, the executable file a.out is created in the active directory. Now a.out
contains debugging information.

Only the parts of a program that have been compiled specifically for debugging can
be debugged at source code level. All other parts can only be debugged on
assembler level. There is a close correspondence between assembler source code
and binary code. Therefore binary code can be disassembled with a so called
disassembler. Of course, if the assembly source code is written by programmers,
they can use symbolic names that resemble macros. But all symbolic names in the
assembler source code assigned by the programmer are lost when assembling. They
cannot be recovered by the disassembler. Instead, they are replaced by
automatically generated names.

3.9.4. Linker
A program requires a general amount of code to be executable at all. Also, programs
usually refer to elements that are in other binaries. The linker combines the
compiled part of the program that the programmer wrote with all the other
required parts and creates an executable file. This process is called linking.

Internally, the source code is compiled into binary object code, which has a binary
format. Then the various binary object code files, which together form the entire
program, are linked into an executable object code file, or executable, which is also a
binary format.

Normally a C++ compiler provides the possibility to generate binary object code
only. For example, one can open a console window, change to the directory
containing the source programs presented so far, and run g++ -c ValuesPerByte.cpp.

– 51 –

The -c option suppresses the execution of the linker. So only a binary object code file
is created. In this case it is called ValuesPerByte.o. It is slightly larger than 10,000
bytes. Despite its binary format it cannot be executed.

Nevertheless, it can be linked afterwards. Running g++ ValuesPerByte.o in a console
window creates the executable binary code a.out. Running g++ -o vpb
ValuesPerByte.cpp causes the compiler to create an executable file named vpb. As
before, the -o option tells g++ the name of the file to generate. On Windows, the
executable should be named vpb.exe. On Windows, executable files have the
extension .exe by default.

It is possible and often necessary to develop a program piecemeal. The result is
several object files that must then be linked to form an executable file. For example,
g++ part1.o part2.o part3.o -o myprog will link the object files part1.o, part2.o, and
part3.o to an executable binary called myprog. Later it will be explained how to split
a program into parts that can be compiled separately.

3.9.5. Example for Debugging
Now the necessary background for debugging has been presented. To demonstrate
debugging, a program for calculating the checksum, also known as sum of digits, is
used (Listing 9). It reads in a natural number, calculates the checksum, and outputs
the result.

1 // Checksum by Ulrich Eisenecker, August 2, 2020
2
3 #include <iostream>
4 using namespace std;
5
6 unsigned long checksum(unsigned long number)
7 {
8 if (number % 10 == number)
9 return number;

10 else
11 return (number % 10) + checksum(number / 10);
12 }
13
14 int main()
15 {
16 cout << "Natural number: " << flush;
17 unsigned long number { };
18 cin >> number;
19 cout << "Checksum = " << checksum(number) << endl;
20 return 0;
21 }

Listing 9: Checksum.cpp

In this program some new features are introduced:

• unsigned long is an integer data type with a composite name. By using
unsigned it represents natural numbers, i.e. non-negative integers, in a

– 52 –

limited range. The lower limit of this range is 0, the upper limit is calculated
according to the formula upper limit=2(number of bytes (data type)×8)−1 . Because of long it
must use at least as many bytes as int, yet it usually occupies more bytes.
The C++ standard defines that int has a width of at least 16 bits, and long will
have at least 32 bits. The two type names unsigned long and unsigned long
int are completely equivalent. For the compiler it makes no difference which
name is used. Some programmers prefer the longer name because it is more
specific with respect to integral numbers, others prefer the shorter name
because it is more concise but still unique.

• The modulo-operator, %, calculates the remainder of an integer division, e.g.,
the result of 28 % 5 is 3.

• The division-operator, /, when applied to integer values, performs integer
division, i.e. the result is an integer value and all decimal places of the result
are lost. For example, the result of 28 / 5 is 5, not 5.6. In C++ and also in
many other programming languages, multiplication and division have a
higher priority than addition and subtraction. This is also true for the modulo
operator. Therefore, the parentheses around the modulo operation in return
(number % 10) + checksum(number / 10); could have been omitted.
Nevertheless, the additional parentheses emphasize the structure of the
arithmetic expression, which makes it easier to understand the code.

• The checksum() function has a recursive implementation. The if statement
checks, whether number modulo 10 is equal to number. If it is, the if branch
returns number as the result. Otherwise, the else branch returns number
modulo 10 plus the return value of the call to the number() function itself,
where number is passed integrally divided by 10 as a parameter. A function
that calls itself in its implementation is called a recursive function. A function
calling indirectly itself is also a recursive function. More precisely, it is an
indirectly recursive function (see Turing-Completeness).

There are many debuggers, most of which are integrated into a so-called integrated
development environment, IDE for short. gdb is the stand-alone debugger of the GNU
project. It is an open source, text-based debugger that runs in a console window.
There are several graphical frontends for gdb that are more convenient to use. For
the screenshots shown in Figures 12 – 14, the graphical frontend nemiver was used.
In principle, any debugger can be used to reproduce the following example. For
now, the focus is on understanding the concepts of debugging. It is advisable to
reproduce the examples later.

The following example uses g++ as compiler, gdb as debugger and nemiver as
graphical frontend.

To prepare the program from Listing 9 for debugging, it must be compiled with the
-g option, i.e. g++ -g -o cs Checksum.cpp. The -o option followed by the filename cs
creates an executable program named cs.

– 53 –

Then nemiver cs is executed in the console window. Figure 12 shows the window
that appears afterwards.

The upper pane of Figure 12 shows the source code of Checksum.cpp. An arrow on a
disc points to the opening brace of the body of main() (line 15). Actually, these are
two overlapping symbols. The first is a red ball indicating a breakpoint, which is
always automatically set at the beginning of main() by nemiver. The second is a
yellow arrow pointing to the line to be executed next. The expression monitor is
active in the lower pane. It shows expressions of the actual scope and expressions
outside this scope.

Figure 12: Debugging Checksum.cpp with nemiver

There are three icons with red arrows in the toolbar. They correspond to the
following debugging actions:

– 54 –

• Step over. Executes the next line, executing one or more functions, but not
stepping into any function. In this way, a sequence of statements of the same
hierarchy level can be stepped over.

• Step into. Executes the next line, but step into the function that is is executed
first. This way it is possible to trace function calls upwards in the function call
stack. One should step only into functions for which source code is available.
Otherwise, the corresponding assembler code will be displayed.

• Step out. Exits the active function. Execution continues at the caller level. It is
common practice to step into a function, then step over its statements, and
finally step out to return to the calling location.

In the toolbar, the icon with the blue round arrow runs or restarts the program.
When it is selected, the program is executed. It waits for input and then outputs
results. To make inputs or see the output the Target Terminal tab, located in the
lower pane, must be selected. After that the console window is displayed in the
lower pane. It is possible to restart a program at any time.

The icon in the toolbar with the gears continues the execution of the program at the
current position of debugging. It starts the program if it is not running yet.

The actions mentioned above are also available from the debug menu.

Setting breakpoints is possible only from the debug menu. A breakpoint can be set at
any statement of the program for which code has been generated. When the
program is executed, the debugger suspends the execution immediately before a
breakpoint is reached. After that, the programmer can perform actions such as step
over or inspect the values of variables. It is also possible to continue the execution of
the program. In this case, the program is executed until the debugger reaches the
next breakpoint or the program is terminated. Breakpoints are very useful to debug
functions or locations of a program without having to execute many steps manually
before reaching the desired location.

To inspect a variable, one simply hovers over it with the mouse. A pop-up message
will appear informing about the name, value and type of the variable. A variable
can also be permanently included in the expression monitor, which distinguishes
between variables that are currently in the scope and those that are not.

Selecting the Context tab at the bottom of the window toggles the pane to display the
function call stack as well as the local variables and function arguments (Figure 13).

– 55 –

Figure 13: Debugger shows function-call stack and local variables

Selecting Switch to Assembly from the debug menu displays the assembler code in
the upper pane. Selecting Switch to Source from the debug menu displays the source
program again.

Now an example debugging session can be described:

1. Run or Restart. The execution arrow then points to the opening brace of
main() (line 15).

2. Step over. The yellow arrow now points to the output statement (line 16).
3. Step over. The yellow arrow now points to the input statement (line 18). The

statement unsigned long number; is omitted because no object code was
generated for it.

– 56 –

4. Step over. The program seems to hang. But it doesn’t. When the Target
Terminal tab is selected in the bottom row of the window, the console
window is displayed in the bottom pane. In fact, the program is waiting for
input. The number 987654321 is entered.

5. Then the lower pane must be changed to Context.
6. The arrow now points to the line that calls checksum() and outputs its return

value (line 19).
7. Step into. The lower pane shows in the left part the function call stack and in

the right part the local variables and the function arguments.
8. Now step into is repeated until the function call stack contains 10 entries

from 0 to 9. The first entry (frame 0) shows that checksum() is called with
number = 9 as argument. Below that, all previous calls to checksum() are
listed. This is the result of executing a recursive function that calls itself. A
function call consumes memory and time. The memory reserved for the
function call stack is limited. Under normal circumstances, recursive calls to
checksum() will not exhaust the function call stack. But functions with deeper
recursion and more and especially large value parameters can cause an
overflow of the function call stack, causing the program to crash. Recursion
can make for very compact and elegant implementations, but it is not
guaranteed to work optimally in C++. This topic will be revisited later.

9. Now, the entry Switch to Assembly is selected from the debug menu. The size
of the window in Figure 14 has been increased to show the complete
assembler code for checksum(). Below a line of source code, the assembler
code generated for that line is displayed. The first two columns contain
positional information, the third column lists the mnemonic codes (abbr.
mnemonics) of the assembler instructions, and the fourth column lists the
operands of the assembler instructions, such as memory addresses and
processor registers. To give a rough idea of what mnemonics stand for, here
are some examples. The mnemonic mov means to move something to a
location, cmp means to compare something, and jne means to jump if not
equal. The difference between high-level statements in C++ and mnemonics
including their operands, is enormous. Of course, it is possible to write very
short programs or routines directly in assembler if that is required for
performance. But writing larger software in assembler language is an almost
impossible task. Moreover, a C++ compiler can perform extensive
optimizations that may not be performed by humans. Therefore, it is very
difficult to outperform an optimizing compiler by writing assembler code
directly.

10. Now the Switch to Source entry of the debug menu is selected.
11. Then step out is repeated until only main() is active in the function call stack.
12. Continue. The program is finally terminated.
13. Selecting the Target Terminal tab displays the checksum.

– 57 –

Figure 14: Debugger shows source lines and assembler code

Now the most important functionality for debugging has been introduced. There is
more a debugger can do, and there are different debuggers with various graphical
frontends. They differ in functionality and especially in the way the functionality is

– 58 –

presented. Therefore, it is pointless to give a more in-depth written tutorial.
Learning to debug with a particular debugger requires intensive training in
practice.

– 59 –

4. Further Details on Basic Concepts
Now the basic concepts mentioned so far shall be looked at in more detail. Since C++
is a very complex language, this presentation is necessarily incomplete. Many
details are omitted and some things are not mentioned at all.

If the content presented in this text is confidently mastered and programming in C+
+ is to be done in practice, it is highly recommended to consult further sources of
information on programming in C++, e.g. (Breymann, 2023) and (Gregoire, 2020).

Reading a book or using it as a reference can be very time consuming. In contrast,
online resources can be more up-to-date and provide easy access. Some websites
that are useful as references for C++ and provide relevant information are
(Cppreference.Com, n.d.) and (Cplusplus.Com - The C++ Resources Network, n.d.). In
addition, many Wikipedia entries provide adequate information on computer
science topics.

The C++ standard itself is a less suitable source of information for beginners. It is a
densely written technical document that describes the C++ programming language
and the libraries included in the standard. The official standard is distributed
through the ISO store. At the time of writing, the most recent version (1,853 pages) is
available at (ISO/IEC, 2020). An earlier working draft of C++ 17 is (Working Draft,
Standard for Programming Language C++, n.d.). An unofficial, more recent online
version is (Song, n.d.).

4.1. Fundamental Types
C++ has several fundamental types built into the language (Fundamental Types -
Cppreference.Com, n.d.). The most important top-level category of fundamental types
is arithmetic types. Arithmetic types include integral and floating point types.

Table 9 provides an overview of the fundamental types, their categories, and
equivalents, i.e. alternative type names.

void is the only incomplete type. Hence it is impossible to have values of type void.

std::nullptr_t is the type of the null pointer literal, nullptr. In fact, nullptr is a
keyword in C++, but not its type, which is defined in the <cstddef> header.

Type category Sub category Sub-sub category Type Equivalent(s)

Incomplete void

std::nullptr_t

Arithmetic Integral Boolean bool

Character char
signed char
unsigned char

– 60 –

Type category Sub category Sub-sub category Type Equivalent(s)

wchar_t
char8_t
char16_t
char32_t

Integral short int short
signed short
signed short int

unsigned short int unsigned short

int signed
signed int

unsigned int unsigned

long int long
signed long
signed long int

unsigned long int unsigned long

long long int long long
signed long long
signed long long int

unsigned long long int unsigned long long

Floating point float

double

long double

Table 9: Fundamental types in C++

4.1.1. Integral Types
The sub category Integral from Table 9 includes the sub-sub categories Boolean,
Character, and Integral. They are described below.

4.1.1.1. bool Type
bool is the type for logical values. There are two logical values, namely false and
true. Obviously, a single bit would be sufficient to store a boolean value. However,
this would be very inefficient with respect to standard computing hardware.
Therefore, the size of bool is implementation defined, i.e. bool occupies one byte or
more.

false can be automatically converted to the integral value 0, true to 1. An integral
value of 0 can be automatically converted to false, any other integral value can be
automatically converted to true.

The program in Listing 10 demonstrates the use of the type bool and the
corresponding operators.

1 // Booleans by Ulrich Eisenecker, February 17,2021
2
3 #include <iostream>

– 61 –

4 using namespace std;
5
6 void printTruthTableNot()
7 {
8 cout << "\nlogical not" << endl;
9 for (bool p : {false,true})

10 {
11 bool r { !p };
12 cout << p
13 << "\t-->\t"
14 << r << endl;
15 }
16 }
17
18 void printTruthTableAnd()
19 {
20 cout << "\nlogical and" << endl;
21 for (auto p : {false,true})
22 {
23 for (auto q : {false,true})
24 {
25 auto r { p && q };
26 cout << p << '\t'
27 << q << '\t'
28 << " -->\t"
29 << r << endl;
30 }
31 }
32 }
33
34 void printTruthTableInclusiveOr()
35 {
36 cout << "\nlogical or" << endl;
37 for (auto p : {false,true})
38 {
39 for (bool q : {false,true})
40 {
41 auto r { p || q };
42 cout << p << '\t'
43 << q << '\t'
44 << " -->\t"
45 << r << endl;
46 }
47 }
48 }
49
50 void printConversionsBoolToInt()
51 {
52 cout << "\nconverting bool to int" << endl;
53 bool p { false };
54 int i { p };
55 cout << "bool value " << p
56 << " becomes int value " << i
57 << endl;
58 auto q { true };
59 i = q;
60 cout << "bool value " << q
61 << " becomes int value " << i
62 << endl;
63 }
64
65 void printConversionsIntToBool()
66 {
67 cout << "\nconverting int to bool" << endl;
68 for (int i { -2 }; i <= 2; ++i)
69 {
70 bool p = i; // calling type conversion constructor

– 62 –

71 cout << "int value " << i
72 << " becomes bool value " << p
73 << endl;
74 }
75 }
76
77 int main()
78 {
79 // boolalpha causes output of "false" or "true"
80 cout << boolalpha;
81 printTruthTableNot();
82
83 // noboolalpha causes output of 0 or 1
84 cout << noboolalpha;
85 printTruthTableAnd();
86
87 // switching back to "false" or "true"
88 cout << boolalpha;
89 printTruthTableInclusiveOr();
90
91 printConversionsBoolToInt();
92 printConversionsIntToBool();
93 }

Listing 10: Booleans.cpp

It has several functions whose names begin with print, which are called by the
main() function. The name of each function expresses the purpose of the function.
The first three functions print truth tables for the logical operators applicable to
boolean operands. The ! operator (logical Not) accepts only one bool operand and
negates its value. The && operator combines two bool operands according to the
logical And. The || operator combines two bool operands according to the logical Or
(also known as inclusive Or).

The other two functions output the effects of converting bool values to int values
and vice versa. When these two functions are executed, they cause exactly the
conversions described above.

The printTruthTableNot() function introduces a novelty, namely a range based for
loop. It contains an initialization statement, here bool p, followed by a colon and a
range expression, here the curly initialization list {false,true}. The loop statement
can be a single statement or a compound statement. The range based for loop
iterates over the given range, here {false,true}, and binds the loop variable, here
p, to the next element of the range in each iteration. In this way, p can be used in the
loop statement. Of course, the type of the loop variable and the type of the elements
of the range must match. This has been done explicitly here. The range based for
loop automatically ensures that the range is not exceeded during its
execution.

The printTruthTableNot() function introduces another new feature, namely the
use of auto for defining variables. When a variable is defined and initialized, its
defining type can be usually inferred from the initializing value. In such cases,
the auto keyword can be used to define a variable of the inferred type. The type

– 63 –

of the loop variable in the initialization statement is inferred from the range
expression, which contains bool values. The type of r is inferred from the result of p
&& q, which is of type bool.

The printTruthTableInclusiveOr() function uses type inference with auto and
explicit type declaration with bool. auto is very convenient, but has also some
limitations. For example, auto is not suitable when an initializer list is used to
initialize an object. Also, it has some special properties that must be taken into
account when using it. They will be explained later.

There is nothing special to say about the printConversionsBoolToInt() function.
This is different for the printConversionsIntToBool() function. It uses a (classic)
for loop. The header of a for loop, enclosed in parentheses, contains three parts
separated by semicolons. The first part is an initialization statement. It defines the
loop variable and initializes it. In int i { -2 } the variable i is of type int and it is
initialized with the value -2. The second part uses the loop variable in a condition.
As long as the condition evaluates to true, the loop will execute. Here, the condition
is i <= 2, so the condition evaluates to true as long as i has a value less than or
equal to 2. The third part changes the loop variable so that the condition is finally
evaluated as false and the for loop is terminated. Here, this part is simply ++i. ++ is
the increment operator, which increases the value of a variable of an arithmetic type
by 1. It can be placed before or after the variable. If it stands before the variable, it
immediately increases the value of the variable by 1 before it is evaluated (pre-
increment operator). If it is after the variable, the variable is evaluated first and then
incremented by 1 (post-increment operator). There is also the -- operator, which
decrements a variable by 1, also in the form pre-decrement and post-decrement.
The header of the for loop is followed by either a simple statement or a compound
statement. Some programmers recommend always using a compound statement.
This recommendation is adopted in this text. There are many variations of a for
loop. Most, if not all, compromise the understandability of a for loop. Therefore,
only the version of a for loop presented above should be used.

In line 70 (function printConversionsIntToBool()), the variable p is declared and
initialized with bool p = i;. An initializer list cannot be used here, since this would
require an explicit type conversion from int to bool, which is not performed
automatically.

Logical operators are subject to short-circuit evaluation. Suppose the functions p()
and q() each return a bool value. If the expression p() && q() is evaluated and p()
returns false, the entire expression evaluates to false without regard to the value
returned by q(). For this reason, the q() function is not called. Another example is
the expression p() || q(). If p() returns true, the entire expression is known to
be true and the function q() is not called. So it is not guaranteed that every operand
of logical operators is evaluated.

– 64 –

Although bool is an arithmetic type, the decrement and increment operators are not
available for it. Therefore, the second statement in bool b { false }; ++b; is
invalid.

4.1.1.2. Character Types
There are several types for characters. The most common one is char. Normally a
variable of type char occupies 1 byte. So it can represent 256 different values.
However, it depends on the compiler and the platform whether char is signed or
unsigned. If it is signed, i.e. signed char, its value range is -128..127, if it is
unsigned, i.e. unsigned char, its value range is 0..255. Although char must be either
signed or unsigned, char, signed char and unsigned char are treated as different
types by the compiler.

Each of these char types can store characters encoded in the 7-bit American
Standard Code for Information Interchange (ASCII for short). ASCII is an early
character encoding still widely used today (“ASCII,” 2021). It defines the ASCII codes
with values 0..127, including control characters such as ‘\n’ (line feed) or ‘\t’
(tab), alphanumeric characters, and some special characters. The eighth bit is
unused. The original ASCII does not contain German umlauts and “ß”. Therefore,
these characters should not be used in programs or as their input.

Since character types are integral types, all corresponding operators apply to them
as well. More about integral operators follows below in connection with the integral
types for numbers.

The remaining character types represent either variable length character encodings
of (char8_t for UTF-8) or character encodings with a larger size. More about this can
be found in (Breymann, 2023), for example.

4.1.1.3. Integer Types
The integer types – in the strictly numeric sense – can have different sizes and be
either signed or unsigned. According to the C++ standard (Fundamental Types -
Cppreference.Com, n.d.), short int occupies at least 16 bits, signed int at least 16
bits, signed long int at least 32 bits, and signed long long int at least 64 bits.
The actual size is platform specific. It would be perfectly legal for all of the above
types to have a size of 64 bit on a given platform. If signed or unsigned is omitted,
signed is assumed by default. There are many synonyms among the names of
integral types (last column of Table 9, labelled Equivalents). For example, short int,
short, signed short, and signed short int all denote the same type. It may be a
matter of personal taste or coding standard which name is chosen. However, it
should be handled consistently throughout the program.

– 65 –

If a program contains an integer literal, its type is deduced from its value. If it fits
into int, int is chosen as type. If it does not fit into int, but fits into long int, then
long int is chosen. If its value does not fit in long int, then long long int is
chosen. What happens if its value cannot be represented as long long int is –
roughly spoken – implementation defined. In addition, the suffix l or L can be used to
indicate that the type of an integral literal is long int, and the suffix ll or LL can be
used to indicate that the type is long long int. For example, 1l is a literal of type
signed long, and 2LL is a literal of type signed long long. Only unsigned literals
can be typed in source code. For example, if the source code contains -1L, it means
the positive literal 1 of type signed long, to which the unary minus, -, is applied to
change its sign.

To indicate that a literal has an unsigned integral type, the suffix u or U is appended.
For example, 3lu and 3UL are two literals with the value 3 of type unsigned long.

Integer literals can be represented in four different bases. A decimal literal (base 10)
starts with a non-zero decimal digit (1..9) followed by zero or more decimal digits
(0..9), for example 42. A binary integral (base 2) starts with the prefix 0b or 0B
followed by at least one binary digit (0, 1), for example, 0b00101010. An octal literal
starts with the digit zero followed by zero or more octal digits (0..7), e.g. 052. A
hexadecimal integral starts with the prefix 0x or 0X, followed by one or more
hexadecimal digits (0..F), e.g. 0x2A.

The readability of integral numbers can be improved by inserting one or more
apostrophes, for example 4’200’420’042l. The apostrophes are ignored by the
compiler when parsing the literal. Apostrophes should be placed from right to
left in groups of equal size, e.g. triplets for decimal literals.

4.1.1.4. std::byte Type
The <cstddef> header provides the type std::byte. It is neither a fundamental type
– and therefore not listed in Table 9 – nor an arithmetic type. It is guaranteed to
occupy exactly one byte of memory. Only bit operators are defined for std::byte.
For this reason, std::byte should be used whenever it must be guaranteed that an
object is exactly 1 byte in size. Whenever this is the case, std::byte should be
chosen instead of char. For this reason, std::byte is mentioned here even though it
is not a fundamental type.

4.1.1.5. Arithmetic Operators
There are several arithmetic operators that can be applied to integral types. The
unary plus, +, explicitly stands for a positive integral value. If omitted, the integral
value is positive by default. The unary minus, -, inverts the sign of its operand.

– 66 –

The addition operator, +, returns the sum of its left and its right operand, e.g., 5 + 3
gives 8. The subtraction operator, -, returns the difference by subtracting the second
operand from the first operand, e.g., 5 – 3 gives 2. The multiplication operator, *,
returns the product of its two operands, e.g., 5 * 3 gives 15. The division operator, /,
returns the result of dividing the first operand by the second operand. If both
operands are integers, / performs an integer division, e.g. 5 / 3 results in 1. Any
fractional part of the division is truncated. Addition and multiplication are
commutative operators, subtraction and division are non-commutative.
Commutative means, that swapping the two operands of an operator basically does
not affect the result of the operation. Non-commutative means that commutativity
cannot be guaranteed.

The modulo operator, %, returns the remainder of the integer division of the first
operand by the second operand, e.g. 5 % 3 gives 2.

There are also six bitwise operators (Arithmetic Operators - Cppreference.Com, n.d.):

1. The bitwise-Not operator (also called Negation), ˜, is a unary operator that
inverts all bits of its integral operand, for example,
˜0b0000’1111’0000’1111
 0b1111’0000’1111’0000.

2. The bitwise-And operator, &, performs an And for each bit of its two integral
operands, for example,
 0b1111’1111’0000’0000
& 0b1010’1010’1010’1010
 0b1010’1010’0000’0000.

3. The bitwise-Or operator, |, performs an (inclusive) Or for each bit of its two
integral operands, for example,
 0b1111’1111’0000’0000
| 0b1010’1010’1010’1010
 0b1111’1111’1010’1010.

4. The bitwise-Xor operator, ^, performs an exclusive Or for each bit of its two
integral operands, for example,
 0b1111’1111’0000’0000
^ 0b1010’1010’1010’1010
 0b0101’0101’1010’1010.

5. The bitwise-left shift operator, <<, shifts all bits of the first operand to the left
by as many bits as the second operand specifies, for example,
0b1111’1111’0000’0000 << 2
0b1111’1100’0000’0000.
Any bit shifted before the MSB is lost. Zeroes are shifted in from the right.

6. The bitwise-right shift operator, >>, shifts all bits of the first operand to the
right by as many bits as the second operand specifies, for example,
0b1111’1111’0000’0000 >> 2
0b0011’1111’1100’0000.

– 67 –

Each bit that is shifted behind the LSB is lost. Zeroes are shifted in from the
left.

4.1.1.6. Promotions and Conversions
There are plenty of promotions for integral types (Implicit Conversions -
Cppreference.Com, n.d.). The purpose of a promotion is to choose a target type that
can correctly represent the value of an integral expression. Apart from promotions,
conversions between integral types can change values and potentially lose
precision. Therefore, it should be ensured that the values of integral literals and
variables, as well as expressions that use integrals, can always be correctly
represented by their target type.

Since an arithmetic overflow is handled differently for signed and unsigned
integrals, signed and unsigned integers should not be mixed in arithmetic
expressions.

The program in Listing 11 demonstrates the arithmetic overflow of signed and
unsigned integral types and points out a peculiarity of applying bit-shift operators
to signed integral types.

1 // UnsignedVsSigned by Ulrich Eisenecker, March 1, 2021
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // underflow and overflow for unsigned
9 cout << "unsigned" << endl;

10 unsigned u { 0 };
11 cout << "lower bound: " << u << endl;
12 u = u - 1;
13 cout << "lower bound - 1: " << u << endl;
14 u = 0;
15 u = ~u; // negate all bits of u
16 cout << "upper bound: " << u << endl;
17 u = u + 1;
18 cout << "upper bound + 1: " << u << endl;
19
20 // underflow and overflow for signed
21 cout << "signed" << endl;
22 u = 0; u = ~u; u = u >> 1; u = ~u;
23 signed s = u; // calling type conversion constructor
24 cout << "lower bound: " << s << endl;
25 s = s - 1;
26 cout << "lower bound - 1: " << s << endl;
27 u = 0; u = ~u; u = u >> 1;
28 s = u;
29 cout << "upper bound: " << s << endl;
30 s = s + 1;
31 cout << "upper bound + 1: " << s << endl;
32 }

Listing 11: UnsignedVsSigned.cpp

– 68 –

In line 10 of Listing 11, the variable u of type unsigned (or unsigned int) is declared
and initialized with 0 so that all bits of u are unset. 0 is the lower bound of unsigned
integral types. Subtracting 1 from 0 causes all bits of the unsigned value to be set.
This gives the upper bound of the corresponding integral type. If unsigned has a
size of 32 bit on a given platform, this value is 4,294,967,295, which equals to 232 – 1.

Next, all bits are set using a slightly more complicated procedure. First, u is assigned
0, which resets all bits, and the result is assigned to u. Then, the operator bitwise Not
is applied to u, inverting all bits. Since all bits were unset before, all bits are set
afterwards. The result is assigned to u. The output of u again shows the upper bound
for this unsigned type.

Adding 1 to the upper bound gives 0, i.e. all bits are unset again.

Line 22 of Listing 11 shows how to set the MSB of an unsigned integral variable and
to reset all other bits. First, u is assigned 0, which resets all bits. Then, all bits of u
are negated one bit at a time and the result is assigned to u. Then all bits of u are
shifted to the right by exactly one position. Thereby the LSB is shifted out to the
right. A zero bit is shifted in from the left, which now has the value of the MSB.
Finally, the bits of u are negated again and assigned to u. This results in the MSB
being set while the remaining bits are unset. This value represents the largest
negative value, i.e. the lower bound that a signed variable can contain, but here in
an unsigned variable.

In the next line, i.e. line 23, the signed variable s is declared and initialized with the
value of u. This is perfectly legal and does not even lead to a warning (Implicit
Conversions - Cppreference.Com, n.d.). On a platform which uses 32 bits for signed
int, this results in the output of -2,147,483,648, which is equivalent to -232/2. As
mentioned earlier, initialization with an initializer list ist not possible here because
the variables s and u are of different types.

Subtracting 1 from this value, all bits are negated. Now the MSB is unset, while all
other bits are set. The result is the upper bound of signed int. If signed int
occupies 32 bit, this corresponds to 232/2 – 1, which gives 2,147,483,647.

Then u is used to create a bit pattern in which the MSB is unset and all other bits set.
Now the bits of u represent the upper bound of signed int. Then s is assigned the
value of u. When sent to standard output, the same value as before is output.

Adding 1 to s and reassigning the result to s flips all bits of s, resulting in the lower
bound introduced above.

Why are the bit operations for creating the bit pattern for lower and upper bound of
signed int not directly applied to variable s? The reason is that bit-shift operators
behave differently for signed int (Arithmetic Operators - Cppreference.Com, n.d.).
Exactly how they behave exactly is partly undefined and partly determined by the

– 69 –

implementation. Therefore, the use of bit shift-operators for signed int is not
recommended.

While arithmetic overflow is well defined for unsigned integral types, it leads to
undefined behavior for signed integral types (Arithmetic Operators -
Cppreference.Com, n.d.). Obviously, an arithmetic overflow does not lead to a
runtime error for signed integral types. It should be mentioned that the program in
Listing 11 may produce different output when compiled by different compilers.

4.1.1.7. Assignment Operators
An expression of the form x = x y⊗ , where ⊗ stands for an arithmetic or a bit
operator, can be rewritten as x = y⊗ . All operators of the form =⊗ belong to the
class of assignment operators (Assignment Operators - Cppreference.Com, n.d.). For
example, u = u >> 1; becomes u >>= 1;. Of course, this scheme applies only to
operators ⊗ that have two operands (the number of operands an operator has is
called arity). For example, operator ~ in u = ~u; has only one operand. Thus, it
cannot be rewritten in this way. The program in Listing 12 shows how to rewrite the
program in Listing 11 using the assignment operators introduced earlier.

1 // UnsignedVsSignedShorter by Ulrich Eisenecker, March 3, 2021
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // underflow and overflow for unsigned
9 cout << "unsigned" << endl;

10 unsigned u { 0 };
11 cout << "lower bound: " << u << endl;
12 u -= 1;
13 cout << "lower bound - 1: " << u << endl;
14 u = 0;
15 u = ~u; // negate all bits of u
16 cout << "upper bound: " << u << endl;
17 u += 1;
18 cout << "upper bound + 1: " << u << endl;
19
20 // underflow and overflow for signed
21 cout << "signed" << endl;
22 u = 0; u = ~u; u >>= 1; u = ~u;
23 signed s = u; // calling type conversion constructor
24 cout << "lower bound: " << s << endl;
25 s = s - 1;
26 cout << "lower bound - 1: " << s << endl;
27 u = 0; u = ~u; u >>= 1;
28 s = u;
29 cout << "upper bound: " << s << endl;
30 s += 1;
31 cout << "upper bound + 1: " << s << endl;
32 }

Listing 12: UnsignedVsSignedIntShorter.cpp

– 70 –

4.1.1.8. Floating Point Types
There are three types for representing floating-point values.

1. float is the single precision floating point type,
2. double is the double precision floating point type, and
3. long double is the extended precision floating point type.

Usually the compiler generates code for double precision arithmetic, even if only
float values are involved. Therefore, float values are converted to double values
before arithmetic operations such as addition or division are performed. Also, long
double should be more precise than double, but it is possible, that it has the same
properties as double (again, double and long double are different types). Therefore,
it is be recommended to use double as floating point type by default, unless memory
or precision is crucial.

To understand floating point types, knowledge of scientific notation for real
numbers is helpful. Here is an example of a floating point number in scientific
notation:

-1.2345e-2

In scientific notation the sign indicates whether the number is positive or negative.
In the example above, the sign is highlighted in red (-). A negative sign is mandatory,
a positive sign can be omitted. The sign is followed by the mantissa, also called the
significand, which is highlighted in green (1.2345). The mantissa shows exactly one
non-zero digit which is optionally followed by a decimal point and other digits, but
no trailing zero digit. Then the exponent, usually assumed to be in base ten,
indicates by how many digits the mantissa must be shifted. The exponent is
highlighted in blue (e-2). In scientific notation e or E has the meaning of 10exponent, i.e.
the preceding number has to be multiplied by the power of ten of the following
exponent. A positive exponent means that the decimal point in the mantissa must
be shifted to the right by exponent digits, a negative exponent means, that is has to
be shifted to the left by exponent digits.

Similar to scientific notation, each floating-point type usually includes exactly one
sign bit, several bits for the exponent, and the bits for the mantissa. The number of
bits for the exponent determines the range of a floating-point type, and the number
of bits used for the mantissa determines its precision.

Floating-point literals can be written in different ways (Floating Point Literal -
Cppreference.Com, n.d.). In most cases, it is sufficient to use either the plain decimal
representation or the scientific decimal representation. If the literal is written
without suffix, e.g. 3.12 or 3.12e+0, it is of type double. The suffix f or F causes the
literal to be of type float, e.g. 3.f or 3.0e+0F. The suffix l or L indicates that the

– 71 –

literal is of type long double, e.g. 2.71828L or 2.71828e0l (the positive sign of the
exponent can be omitted).

Any floating-point value can be converted into another floating-point value (Implicit
Conversions - Cppreference.Com, n.d.). If the exact value is preserved, it is a
promotion, not a conversion. For example, a float value is promoted to a double
value.

Any floating-point value can be converted into an integer value. During the
conversion, the fractional part of the floating-point value is truncated. If the
floating-point value does not fit into the integral type, the behavior is undefined.

Any integer value can be converted into a floating-point value. If the integral value
does not fit into the floating-point type, the behavior is undefined.

Since failed conversions lead to undefined behavior, it is difficult to give valid
instances for these consequences. What happens, when such a conversion fails
depends on the hardware and the compiler. One way to assign a huge long double
value to a variable of type short is to have the integral variable to take the largest
possible value that can be represented by short. Assigning the largest possible
unsigned long long value to a variable of type float may may result in a loss of
precision. But all this is speculative, since the behavior in these cases is undefined.

Various manipulators control the format when sending floating point values to the
output (Input/Output Manipulators - Cppreference.Com, n.d.). The program in Listing
13 demonstrates some of them.

1 // FloatOutput by Ulrich Eisenecker, November 2,2021
2
3 #include <iostream> // implicitly includes <ios>
4 #include <iomanip> // because of setprecision
5 using namespace std;
6
7 int main()
8 {
9 double d { };

10 cout << "Formatting floating point values\n"
11 << "Enter 42.0 to terminate program.\n"
12 << endl;
13 do
14 {
15 cin >> d;
16 cout << "default: " << d << endl
17 << "scientific: "
18 << scientific << d << endl
19 << "fixed: "
20 << fixed << d << endl
21 << "setprecision(20): "
22 << setprecision(20)
23 << d << endl
24 << "hexfloat: "
25 << hexfloat << d << endl
26 << "defaultfloat: "
27 << defaultfloat << d << endl;
28 } while (d != 42.0);
29 }

– 72 –

Listing 13: FloatOutput.cpp

The sample dialog shown in Figure 15 shows the result of running this program. It
may slightly vary on another computer.
Formatting floating point values
Enter 42 to terminate program.

5
default: 5
scientific: 5.000000e+00
fixed: 5.000000
setprecision(20): 5.00000000000000000000
hexfloat: 0x1.4p+2
defaultfloat: 5
42
default: 42
scientific: 4.20000000000000000000e+01
fixed: 42.00000000000000000000
setprecision(20): 42.00000000000000000000
hexfloat: 0x1.5p+5
defaultfloat: 42

Figure 15: Sample dialog for executing FloatOutput.cpp (Listing 13)

The number 5 is a perfect input, even it is not explicitly entered as a floating-point
value, i.e. 5.0. Without further precautions the output is 5. The manipulator
scientific causes the output to be in scientific format and to consist of a mantissa
and an exponent. The exponent is positive and zero because the decimal point does
not need to be moved. fixed causes a fixed number of digits to be used for the
output. setprecision(int_val) causes the output to use int_val digits after the
decimal point. After hexfloat the floating point value is output in hexadecimal
format. The default format for floating-point output can be restored with
defaultfloat – at least almost. As the second run of the do loop shows, the number
of digits used for output is still set to 20.

It is very instructive to run this program with different numbers. First, the format
for the number input can be varied, e.g. by using a decimal point or scientific
notation. Second, the number itself can be varied, e.g. numbers with large mantissas
or negative or positive exponents of different sizes.

Entering an invalid value has a noticeable effect. The program no longer asks for
the input, but starts to output the same value, mostly 0 in different formats, again
and again. The program must be interrupted by pressing Ctrl-C, i.e. press the Control
key, hold it and additionally press the c key. The reason for this is that after an
invalid input the object cin is in an error state and does not accept any further
inputs. The different states of cin and other streams will be discussed later.

It must be understood that floating-point numbers are an imperfect substitute for
real numbers (“List of Types of Numbers,” 2021). The set of real numbers includes
both the set of rational numbers, which is countably infinite, and the set of irrational

– 73 –

numbers, which is not countably infinite. Because of the inclusion of the irrational
numbers, the set of real numbers is also not countably infinite. Unlike the real
numbers, all floating-point numbers are finite (and therefore countable) because
they are represented with a limited number of bits. Theoretically, all floating-point
numbers could be enumerated by systematically creating all 2n permutations
(“Permutation,” 2021) of the n bits used to represent a floating-point type. A
consequence of this is, that calculations with floating-point numbers are not
principally exact. Principally exact means, that every calculation with floating-point
numbers gives an exact result – and this is not the case. Of course, there are some
calculations with floating-point numbers that give an exact result. For example, the
expression 0.4 + 0.4 gives exactly 0.8, but 0.4 + 0.4 + 0.4 does not give exactly 1.2!
That is demonstrated below using two for loops. The for loop in Listing 14 gives the
expected result, which is shown in Figure 16.

1 for (double i { 0.0 }; i <= 0.8; i += 0.4)
2 {
3 cout << i << endl;
4 }

Listing 14: for loop – exact computation

0
0.4
0.8

Figure 16: Output generated by for loop – exact computation (Listing 14)

The for loop in Listing 15 leads to the unexpected result shown in Figure 17.
Obviously, the last value, 1.2, is missing!

1 for (double i { 0.0 }; i <= 1.2; i += 0.4)
2 {
3 cout << i << endl;
4 }

Listing 15: for loop – inexact computation

0
0.4
0.8

Figure 17: Output generated by for loop – inexact computation (Listing 15)

This is because some floating point numbers can be represented exactly internally,
but others cannot. This is due to the binary representation of floating point
numbers in the decimal system. Excellent background information, including a
discussion of how this problem can be solved by choosing a different base, can be
found in (Cheng, 2017).

This has several consequences:

• Floating point calculations can generally provide approximative results;
there is no guarantee of exact results.

– 74 –

• Results of floating-point calculations should never be checked for equality
with a particular value using the == operator, but rather to see if the result
falls within a certain range. An alternative is to check whether the amount of
the difference of the actual and expected value is less than a relatively small
value close to zero. The program shown in Listing 16 illustrates both
possibilities.

• Important mathematical properties, such as associativity or distributivity, can
be violated in floating point arithmetic. Therefore, floating point calculations
should not depend on these properties.

• The use of floating point variables as loop variables should be avoided.

The first output statement of the program in Listing 16 shows again that the result
of the calculation of 0.0 + 0.4 + 0.4 + 0.4 is not exact. Therefore, d == 1.2 is
evaluated as false. The second output statement tests whether d lies in the interval
(1.1999,1.2001).

1 // TestingFloats by Ulrich Eisenecker, November 3 ,2021
2
3 #include <iostream>
4 #include <cmath> // because of fabs()
5 using namespace std;
6
7 int main()
8 {
9 double d { 0.4 + 0.4 + 0.4 };

10 cout << boolalpha
11 << "d == 1.2: " << (d == 1.2) << endl;
12 cout << "1.1999 < d && d < 1.2001: " << (1.1999 < d && d < 1.2001) << endl;
13 cout << "fabs(d - 1.2) < 0.0002: " << (fabs(d - 1.2) < 0.0002) << endl;
14 }

Listing 16: TestingFloats.cpp

It is worth mentioning that when an interval is specified textually – not in a
program – a parentheses is used to indicate an excluded boundary, while the use of
a bracket means that the corresponding boundary is included. Thus, (1.1999,1.2001]
specifies an interval where the lower bound is excluded while the upper bound is
included. [1.1999,1.2001) specifies an interval where the lower bound is included
but the upper bound is excluded.

In the third output statement the expected value is subtracted from the calculated
value. The function fabs() (which means float absolute value) calculates the
absolute value of its argument. Finally, it is checked if this value is smaller than a
relatively small value close to zero.

The program in Listing 17 illustrates two other interesting aspects of floating-point
arithmetic, namely infinitely large results and results that are not a number.

1 // Infinity_NaN by Ulrich Eisenecker, November 3, 2021
2
3 #include <iostream>
4 #include <cmath> // because of sqrt() and macros INFINITY and NAN
5 using namespace std;

– 75 –

6
7 int main()
8 {
9 double d { 1.0 / 0.0 };

10 cout << d << endl;
11 cout << boolalpha
12 << "d == INFINITY: " << (d == INFINITY) << endl;
13 d = sqrt(-1.0);
14 cout << d << endl;
15 cout << "d == NAN: " << (d == NAN) << endl;
16 cout << "NAN == NAN: " << (NAN == NAN) << endl
17 << "NAN != NAN: " << (NAN != NAN) << endl;
18 }

Listing 17: Infinity_NaN.cpp

When d is declared, it is initialized with the value of the expression 1.0 / 0.0. One
possibility is that a division by zero causes a runtime error. This is not the case here.
Another possibility is that dividing 1.0 by zero results in an infinitely large number,
i.e. infinity. Although floating-point types cannot represent an infinite number of
values, they can very well represent infinity. And this is exactly what happens. The
following output statements output inf. There is even a macro that defines the
internal representation of infinity. Both aspects, the human readable value inf and
the internal representation of infinity, must be distinguished. Evaluating d ==
INFINITY yields true.

Then the square root of -1 is calculated with the sqrt() function and the result is
assigned to d. The calculation of the square root of a negative number results in a
complex number. However, complex numbers are not one of the fundamental types
of C++. They are defined in the <complex> header, but the sqrt() function does not
know about this header. Another option is to generate a runtime error. But this
option is not chosen here, the result rather takes the value not a number, NAN for
short, which means that the result is invalid. Sending NAN to cout prints nan in the
console window. The next three statements illustrate an interesting property of
NAN. When NAN is tested for equality with itself, the result is false. At least, testing
NAN for inequality with itself yields true. For more on INFINITY and NAN, see
(INFINITY - Cppreference.Com, n.d.) and (NAN - Cppreference.Com, n.d.).

The isnan() function defined in the <cmath> header returns true if the passed value
is not a number, and false otherwise (Std::Isnan - Cppreference.Com, n.d.). The
isinf() function defined in the <cmath> header returns true if the passed value is
positive or negative infinity, and false otherwise (Std::Isinf - Cppreference.Com,
n.d.).

4.1.1.9. Real World and Computer – Again
The importance of the relationship between a problem in the real world and its
solution in form of a program has already been emphasized several times, for
example in the Section Program and Reality .

– 76 –

This is to be taken up here once again. Integral numbers and real numbers are part
of reality, even if they belong exclusively to the immaterial world. They are deeply
understood, they are well formalized, and there is a wealth of knowledge and easily
accessible documentation about them. If there is a problem involving integer or real
numbers, there may already be a solution that just needs to be found, or it may be
relatively easy to develop such a solution using the available body of knowledge.
The next step is then to transfer this solution to the domain of computers and
programming languages. It is now clear that computers and programming
languages offer only limited possibilities for implementing this solution. Several
limitations must be considered, such as the limited range of values, the limited
precision, and the lack of properties that hold in the real world, such as associativity
and distributivity. Just think again of the infinite number of real numbers mapped
to a single floating point value! One of the reasons for this is that a computer is
never a perfect Turing machine. It does not have infinite memory, and the time to
perform computations is also limited. Therefore, solutions in the form of programs
are often only well thought-out approximations and fine-tuned abstractions of
reality or, more generally, of the problem to be solved. Therefore, a proper
understanding of the requirements associated with the problem is critical.
Important requirements should not be overlooked, and requirements should not
be contradictory. In addition, one should be aware of the limitations that computer
hardware, programming languages, and programming paradigms impose on the
development and implementation of a solution in the form of software. A basic
assumption should also be mentioned. Reality is much more comprehensive and
detailed than software can be. Thus, if a problem from reality is mapped to a
solution in software with its strong constraints, this will usually be a unidirectional
mapping from the problem in reality to the software solution. Reverse inferences
from findings in software must therefore always be thoroughly validated. And the
more serious the consequences can be, the more intensively and critically these
findings should be evaluated.

4.2. More About Types
The following sections explain how to get information about types, introduce type
qualifiers, give an insight into the memory organization of a C++ program, take a
look at pointers and present some advice on naming identifiers.

4.2.1. Information About Types
Instead of defining the exact properties of a type, C++ specifies exactly how the
properties of a type can vary depending on the platform and the compiler. The

– 77 –

question now is how to retrieve information about the properties of a type.
Fortunately, C++ provides several mechanisms for retrieving such information.

The sizeof operator determines how many bytes a type occupies in memory (Sizeof
Operator - Cppreference.Com, n.d.). The language usage is imprecise here, since only
exemplars or, in other words, instances of types occupy memory, but not the type
itself.

sizeof can be applied to expressions, including literals, and types, except for –
among others – incomplete types. sizeof returns a result of type std::size_t. This
is a type alias for an integer type which can represent the maximum size of objects
in bytes (Std::Size_t - Cppreference.Com, n.d.). On most platforms, a byte consists of 8
bits. However, this can also vary. The CHAR_BIT macro (defined in the <climits>
header) determines how many bits a byte has on the respective platform (C Numeric
Limits Interface - Cppreference.Com, n.d.).

The program shown in Listing 18 illustrates the use of the sizeof operator.
1 // Sizeof by Ulrich Eisenecker, November 3: ,2021
2
3 #include <iostream>
4 #include <climits> // because of CHAR_BIT
5 using namespace std;
6
7 int main()
8 {
9 cout << "A byte has " << CHAR_BIT

10 << " bit on this platform."
11 << endl;
12 // cout << "sizeof(void); " << sizeof(void) << endl;
13 // uncommenting previous line causes an error,
14 // because void is an incomplete type
15 cout << "sizeof(-.0e-42f): " << sizeof(-.0e-42f) << endl;
16 cout << "sizeof(1/0.0): " << sizeof(1 / 0.0) << endl;
17 cout << "sizeof(long double): " << sizeof(long double) << endl;
18 size_t size { sizeof(size_t) };
19 cout << "sizeof(size): " << sizeof(size) << endl;
20 }

Listing 18: Sizeof.cpp

Figure 18 shows the output generated after compiling and running this program. It
may look different on a different computer.
A byte has 8 bits on this platform.
sizeof(-.0e-42f): 4
sizeof(1/0.0): 8
sizeof(long double): 16
sizeof(size): 8

Figure 18: Output of the Sizeof.cpp program (Listing 18)

sizeof(void) is illegal, because void is an incomplete type. Therefore, this line is
commented out and produces no output. On the platform used, a byte has eight bits.
The next three statements output the number of bytes occupied by the types float,
double, and long double on this platform. First, sizeof is applied to a literal (more

– 78 –

precisely, a literal expression). Then, sizeof is applied to an expression whose two
parts are literal expressions. Normally, the compiler would evaluate this expression,
since this is possible at compile time. However, when sizeof is applied to an
expression, the expression is not evaluated. Third, sizeof is applied to a type.
Finally, sizeof is used to determine the number of bytes occupied by an object of
type std::size_t. On this platform, this is 8 bytes, which means that a maximum
size of 232 bytes can be represented.

The C++ standard contains a type support library. It provides a wealth of options for
retrieving type-related information. A particular type-related information, i.e. a
property of a type, is called a trait. Since a type is information about an expression
or a variable, information about types is meta information. In the following, a small
selection of meta information for types and the access to this information is
presented.

The program shown in Listing 19 demonstrates various checks using fundamental
types.

1 // TypeInformation by Ulrich Eisenecker, August 12, 2024
2
3 #include <iostream>
4 #include <type_traits> // Because of is_arithmetic_v<>, is_integral_v<>,
5 // is_unsigned_v<>, is_signed_v<>,
6 // is_floating_point_v<>, is_same_v<>.
7 #include <cstddef> // Because of std::nullptr_t.
8 using namespace std;
9

10 int main()
11 {
12 cout << boolalpha
13 << "is_arithmetic<>"
14 << endl
15 << is_arithmetic_v<bool> << endl
16 << is_arithmetic_v<char> << endl
17 << is_arithmetic_v<int> << endl
18 << is_arithmetic_v<double> << endl
19 << is_arithmetic_v<nullptr_t> << endl;
20
21
22 cout << "\nis_integral_v<>" << endl
23 << is_integral_v<bool> << endl
24 << is_integral_v<char> << endl
25 << is_integral_v<int> << endl
26 << is_integral_v<double> << endl
27 << is_integral_v<nullptr_t> << endl;
28
29 cout << "\nis_unsigned_v<>" << endl
30 << is_unsigned_v<bool> << endl
31 << is_unsigned_v<char> << endl
32 << is_unsigned_v<int> << endl
33 << is_unsigned_v<double> << endl
34 << is_unsigned_v<nullptr_t> << endl;
35
36 cout << "\nis_signed_v<>" << endl
37 << is_signed_v<bool> << endl
38 << is_signed_v<char> << endl
39 << is_signed_v<int> << endl
40 << is_signed_v<double> << endl
41 << is_signed_v<nullptr_t> << endl;

– 79 –

42
43 cout << "\nis_floating_point_v<>" << endl
44 << is_floating_point_v<bool> << endl
45 << is_floating_point_v<char> << endl
46 << is_floating_point_v<int> << endl
47 << is_floating_point_v<double> << endl
48 << is_floating_point_v<nullptr_t> << endl;
49
50 cout << "\nis_same_v<>" << endl
51 << is_same_v<bool,bool> << endl
52 << is_same_v<bool,int> << endl;
53
54 cout << "\nis_same_v<>" << endl
55 << is_same_v<int,signed int> << endl;
56 }

Listing 19: TypeInformation.cpp

is_arithmetic_v<> is a so-called variable template to which the result of the
execution of a so-called template meta-function is assigned at compile time, e.g.
is_arithmetic_v = is_arithmetic<T>::value (a syntactically incorrect
simplification that serves to outline the idea).

Consequently, is_arithmetic_v<bool> is true because bool is an arithmetic type.
is_arithmetic_v<nullptr_t> is false because std::nullptr_t is not an arithmetic
type. The remaining template variables do what their names suggest. To use _v as a
shorthand for ::value for all C++ traits is possible since C++20. For more
information, see (Breymann, 2023), p. 525.

The variable template is_same_v<> takes two types as arguments. The result of
checking bool and bool for sameness is obvious. Less obvious, but still correct, is
that is_same_v<int,signed int> is also true.

At the moment, it is not important to understand exactly what a template is. It is
sufficient to use it. To identify a template, be it a variable or function template as
before or a class template that will appear later, a pair of angle brackets is appended
to its name. A little more information on templates is given in Section Data .

Figure 19 shows the output of a modified version of the program in Listing 19. For a
better overview the information is presented in tabular form. Using is_same_v<>
has been omitted. The listing of the corresponding program is not included here.
 | bool | char | int | double | nullptr_t
--------------------+----------+----------+----------+----------+----------
 is_arithmetic_v | true | true | true | true | false
--------------------+----------+----------+----------+----------+----------
 is_integral_v | true | true | true | false | false
--------------------+----------+----------+----------+----------+----------
 is_unsigned_v | true | false | false | false | false
--------------------+----------+----------+----------+----------+----------
 is_signed_v | false | true | true | true | false
--------------------+----------+----------+----------+----------+----------
is_floating_point_v | false | false | false | true | false

Figure 19: Type information in tabular form

– 80 –

The values of is_unsigned_v<> and is_signed_v<> for char may differ on other
platforms. The other values should be the same.

Of course, is_signed_v<double> is true, because every floating point type is signed.
For std::nullptr_t, all values are false. Since std::nullptr_t is not an arithmetic
type, the arithmetic-related information is not applicable and therefore false. Like
the other types for which meta information was determined, std::nullptr_t is a
fundamental type. Therefore, the value of is_fundamental<> had to be true for all
types listed in the table, including std::nullptr_t if a corresponding line was
included in the table.

One remarkable observation deserves to be mentioned. When running the modified
program under macOS compiled with Apple clang version 18.1.8, a strange problem
occurs: The output width set with the corresponding manipulator is sometimes
wrong for false. Therefore, the table is distorted. Compiling and running exactly
the same program using g++ 9.3.0 on a Linux platform (and also under macOS
compiled with g++ 14.1.0) gives the expected result. According to a personal
communication with Uli Breymann, the problem is caused by the library used (libc+
+ on macOS and libstdc on Linux). The reason is apparently an insufficient specif-
cation in the C++ standard (C++ Standard Library Active Issues List, n.d.).

Finally, some meta information for arithmetic types from the <limits> header
(Std::Numeric_limits - Cppreference.Com, n.d.) is presented. This time, a template
called numeric_limits<> is used to access information for a type passed as an
argument. For example, numeric_limits<T>::is_specialized tells whether there
is any information at all for the type T specified inside the angle brackets. The
program shown in Listing 20 contains some usage examples.

1 // NumericLimits by Ulrich Eisenecker, March 15, 2021
2
3 #include <iostream>
4 #include <limits> // Because of numeric_limits<>.
5 #include <cstddef> // Because of std::nullptr_t.
6 using namespace std;
7
8 int main()
9 {

10 cout << boolalpha;
11
12 cout << "nullptr_t" << endl
13 << numeric_limits<nullptr_t>::is_specialized << endl
14 << numeric_limits<nullptr_t>::is_exact << endl
15 << numeric_limits<nullptr_t>::min() << endl
16 << numeric_limits<nullptr_t>::max() << endl
17 << numeric_limits<nullptr_t>::epsilon() << endl;
18
19 cout << "\nint" << endl
20 << numeric_limits<int>::is_specialized << endl
21 << numeric_limits<int>::is_exact << endl
22 << numeric_limits<int>::lowest() << endl
23 << numeric_limits<int>::min() << endl
24 << numeric_limits<int>::max() << endl
25 << numeric_limits<int>::epsilon() << endl;
26

– 81 –

27 cout << "\ndouble" << endl
28 << numeric_limits<double>::is_specialized << endl
29 << numeric_limits<double>::is_exact << endl
30 << numeric_limits<double>::lowest() << endl
31 << numeric_limits<double>::min() << endl
32 << numeric_limits<double>::max() << endl
33 << numeric_limits<double>::epsilon() << endl;
34 }

Listing 20: NumericLimits.cpp

std::nullptr_t is a fundamental type, but not an arithmetic type. Therefore, it is a
good candidate for testing numeric_limits<nullptr_t>::is_specialized. Of
course, this meta information is false for std::nullptr_t. For this reason, it is
useless to access the following meta information. Nevertheless, this is done out of
pure curiosity. That numeric_limits<nullptr_t>::is_exact is false can be seen as
an indicator that exactness is not relevant for a type for which numeric_limits<>
provides no information. The next three pieces of meta information are retrieved
by executing so-called static member-functions. This can be recognized by the double
colon before the identifier and the following pair of matching parentheses. Static
member-functions will be explained later. The only issue here is how to use them.
numeric_limits<nullptr_t>::min() returns the single value that std::nullptr_t
has, namely nullptr. Despite the fact that numeric_limits<> does not provides
meta information for std::nullptr_t, this is a precise information.
numeric_limits<nullptr_t>::max() behaves exactly the same way.
numeric_limits<>::epsilon() returns the machine epsilon, which is the difference
between 1.0 and the next value that can be represented by a given floating-point
type. Of course, the value nullptr is not meaningful, but nevertheless, the actual
result is what one can expect for std::nullptr_t.

numeric_limits<> provides meta information for int. int is an exact type, and its
lowest, minimum, and maximum values can be easily accessed with
numeric_limits<int>::lowest(), numeric_limits<int>::min(), and
numeric_limits<int>::max(). These special values do not have to be constructed in
a such complicated way as shown in Listing 11. The lowest and the minimum value
coincide in the case of int. For integer types, there is no suitable definition of
epsilon. Therefore, the result 0 returned by numeric_limits<int>::epsilon()
should not be interpreted.

For double all the previously mentioned meta information is available and useful.
Therefore, numeric_limits<double>::is_specialized returns true. A floating
point type does not allow exact calculations. Therefore,
numeric_limits<double>::is_exact is false. The lowest value is actually the most
negative value that can be represented by double. The minimum value is the
smallest value that can be represented. The lowest, minimum and maximum values
may vary on another platform, for example, because double is represented with a
different number of bytes. The program in Listing 20 outputs only a small portion of

– 82 –

the mantissa of values. To adjust the number of digits of the mantissa, the
setprecision() manipulator from <iomanip> header can be used (see Section
Floating Point Types).

4.2.2. Pointers
When a program is started, the loader loads it into the computer’s main memory,
known in technical terms as random-access memory (RAM for short). Where exactly
a program is located in RAM depends on various factors. A program normally has
its own address space. Therefore, an address used in a program is relative to the
program’s address space; it is not a hardware address. The need for absolute
hardware addresses has largely been eliminated today.

Each object (in the meaning introduced in the Section Initialization of Variables) is
located somewhere in the address space of a program. The address of its initial
position in memory is a pointer. The same is true for functions. Every function is
located somewhere in the address space of a program. A pointer to a function, i.e. a
function pointer, is the entry point to this function.

How many bytes an address requires depends on the size of the addressed
information units and their number. For example, a total of 8 gibibyte of address
space is reserved for a program, and each byte of this 8 gibibyte must be addressed.
One gibibyte (GiB) contains 1,024 mebibytes (MiB), one MiB contains 1,024 kibibyte
(KiB), and one KiB holds 1,024 byte. Thus, 8,796,093,022,208 bytes must be addressed
individually. The logarithmus dualis (abbr. ld) of this number gives the number of
bits which are required to address all these bytes, namely ld(8,796,093,022,208) = 43.
If the result of the calculation of ld would have a fractional part, it had to be
rounded up to the nearest integer. Normally, addresses, object sizes, etc. are aligned
with the word size of the computer hardware, which today is either 32 or 64 bits.
Thus, a pointer to address each byte of 8 GiB has a size of 64 bits.

In C++, the address operator, &, returns the memory address of an object. To store
this address, a pointer variable, or pointer for short, is required. A pointer must be
defined with the type of the object to which it points, followed by an asterisk *. It is
important to understand that a pointer is a variable that is supposed to
contain the address of another variable. Therefore, everything that is said
about variables also applies to pointers. The code fragment shown in Listing 21
illustrates this.

1 int i { 42 };
2 int * pi { &i };

Listing 21: Pointer

– 83 –

It is worth remembering once again that in C++ the meaning of symbols can vary
depending on the context in which they are used. For example, when applied to
integer values, the & operator means performing a bitwise operation, and when
applied to an object, it returns the object's memory address.

The first line of Listing 21 defines a variable named i of type int and initializes it to
42. The second line defines a pointer to int named pi, which is initialized to the
address of variable i by applying the address operator, &, to its operand i.

Getting the address of an object has a complementary operation, namely
dereferencing a pointer with the dereference operator, *. The code fragment in
Listing 22 continues the code fragment of Listing 21. Therefore, the line numbers
are continued.

3 *pi = 99;
4 cout << i << endl;

Listing 22: Dereferencing a pointer

*pi dereferences the pointer. The result of the dereferencing is the object itself. This
object, here the variable i, is assigned a new value. To see the effect of this
assignment, i is then sent to cout.

Depending on the context, the asterisk, *, has two different meanings. In int *
pi ..., it is part of the declaration. In *pi = ..., it is the dereference operator.

The use of a pointer can be dangerous. To illustrate this, Listing 23 shows a slightly
modified code fragment.

1 int i { 42 };
2 int * pi;
3 *pi = 99;
4 cout << i << endl;

Listing 23: Dangling pointer

The difference to Listing 21 is that in Listing 23, the pointer pi is not initialized
when it is defined. Also, it is not assigned a valid value afterwards. Therefore, pi
points to somewhere, perhaps to a program or hardware memory address, perhaps
to a non-existent memory address. This is not a random value (as described in some
articles and books), but an undefined value. Such a pointer is called a dangling
pointer. When pi is dereferenced, there is only a small probability that it actually
points to i. Worse, in most cases, assigning a value to *pi will have no noticeable
effect, but it is still an error. An undefined pointer is a lurking danger.

For this reason, a pointer should always be initialized when it is defined. A valid
initialization value is either the address of an object or nullptr. nullptr is a
keyword in C++ and denotes a value that points to nothing. Defining a pointer with
zero initialization, for example int * pi {} has the effect of initializing the pointer

– 84 –

with nullptr. Dereferencing a pointer with value nullptr results in undefined
behavior and may crash the program.

A pointer with value nullptr is converted to false when used in a logical
expression. As the code fragment in Listing 24 shows, this can be used to
dereference only valid pointers.

1 if (pi)
2 cout << (*pi) << endl;
3 else
4 cout << “nullptr” << endl;

Listing 24: Checking for valid pointer

nullptr can be assigned to any pointer type. As stated in Section Fundamental
Types , nullptr is of type std::nullptr_t. This is different for other pointer types. A
pointer to signed int cannot be assigned to a pointer to unsigned int, as the code
fragment in Listing 25 shows.

1 signed int i = 1;
2 signed int * pi = &i;
3 unsigned int j = 2;
4 unsigned int * pj = &j;
5 pj = pi; // Compile-time error: assignment between incompatible types.

Listing 25: Incompatible pointer types

Some older programs or libraries use void*, which is a pointer to void. A pointer of
any type can be assigned to a pointer to void. However, the reverse is not possible. A
pointer to void cannot be assigned to a pointer of another type without special
measures. void* should not be used in modern C++ programs.

4.2.3. Stack vs. Free Store
C++ has several memory areas (GotW #9: Memory Management - Part I, n.d.). Two of
them are the stack and the free store, which is also called heap. Both are of limited
capacity. Normally, the stack has a smaller capacity than the heap. Each time a
function is called, a new stack frame is pushed onto the stack. A stack frame
contains, among other information, all the local variables of a function. When the
function terminates, the corresponding stack frame is popped off the stack. In
Section Example for Debugging , Figure 13 shows an example of a function call stack,
in this case the checksum() function of the Checksum.cpp program (Listing 9). When
the stack is used up, attempting to push a new stack frame usually causes the
program to crash.

The free store is usually larger than the stack. Therefore, a large object should be
created dynamically on the free store. It is released when it is no longer needed.
After that, the freed memory is available for creating other dynamic objects. A so-
called dynamic-data structure is also created on the free store, because the memory

– 85 –

it requires is not known before run time. Dynamic-data structures will be explained
and used later.

4.2.4. Dynamic Objects
An object created in the free store is a dynamic object. In the code fragment shown
in Listing 26 a double variable is created as dynamic object.

1 double * pd { new double(42.0) };

Listing 26: Dynamic object

The new operator creates an object of the specified type, here double, on the free
store. It returns the address of this object in the free store. This address is used for
initializing a pointer to double called pd. The dynamic double object is created by
calling its copy constructor (see Section Initialization of Variables) with the value
42.0.

Then the object can be used by dereferencing the pointer (Listing 27).
2 cout << (*pd) << endl; // Sends value of *pd to standard output.

Listing 27: Dereferencing a pointer

When sending the result of evaluating an expression to cout, it is advisable to
enclose the expression in parentheses. In the current case, *pd would be parsed
correctly. However, there are expressions, for example with bitwise << operator, that
cannot be parsed correctly without parentheses.

As Listing 28 shows, a new value can also be assigned to the object. It is then sent to
cout.

3 *pd = 99.0;
4 cout << (*pd) << endl;

Listing 28: Using a dereferenced pointer

When the object is no longer needed, it is released with the delete operator, as
shown in Listing 29.

5 delete pd;
6 pd = nullptr;

Listing 29: Releasing a pointer

When an object is deleted, its destructor is called and the previously occupied
memory is freed. A destructor is the counterpart to a constructor, which was
introduced in the Section Initialization of Variables . A destructor performs all the
actions that must be performed when an object is destroyed. While an object can
have multiple constructors, it has exactly one destructor. A fundamental data

– 86 –

type does not have an explicitly defined destructor. The destructor of a fundamental
type basically does nothing.

There are several pitfalls:

• As explained earlier, a pointer which is not initialized, i.e. a dangling pointer,
is invalid and should never be dereferenced.

• Also, an invalid pointer should not be deleted. If a pointer has the value
nullptr (either by initialization or by assignment), it can be deleted without
harm.

• A dynamic object should be deleted when it is no longer needed. This is
not only good style, but also important to preserve available free store.

• Before assigning the address of another dynamic object to a pointer, the
dynamic object the pointer actually points to should be deleted. Failure to do
so will result in a memory leak. A program with a memory leak may run for a
long time until it crashes due to insufficient free store. A dynamic object
that no longer has a pointer pointing to it, it is completely lost. It can
neither be accessed nor deleted. Sometimes such an object is also called an
orphan object.

• After deleting an object, nullptr should be assigned to the pointer. This value
indicates that this pointer should not be dereferenced. A pointer that has
been deleted without nullptr being assigned, but is still in use, is also a
dangling pointer. Dangling pointers are a common source of errors in C++
programs.

Operators new[] and delete[] allow to create a variable number of dynamic objects
on the free store. They are not presented here because other data types are better
suited for managing a variable number of objects and are easier to use.

Even new and delete are mostly superfluous in modern C++. Other pointer types
that are less error-prone and almost as efficient are introduced as needed.

4.2.5. References
A reference is an alias for an object, i.e. it is another name for the object. A reference
must always be initialized in its declaration. There is a subtle exception that
becomes relevant later: When a reference is declared as a member of a class, it can
be initialized in a constructor of that class. A reference can only be declared, but
not defined, because no memory is allocated for a reference. After it is
declared, a reference cannot be changed to refer to another object. An object
and a reference to it cannot be distinguished. They are the same object. The
program shown in Listing 30 illustrates this.

1 // References by Ulrich Eisenecker, March 18, 2021
2

– 87 –

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 double d { 1.0 / 3.0 };
9 double & rd = d;

10 cout << "d: " << d << endl
11 << "rd: " << rd << endl;
12 rd *= 3.0;
13 cout << "d: " << d << endl
14 << "rd: " << rd << endl;
15 double & rd2 { rd };
16 cout << "rd2: " << rd2 << endl;
17 double * pd { &d },
18 * prd { &rd };
19 cout << boolalpha
20 << "pd == prd: "
21 << (pd == prd) << endl;
22 }

Listing 30: References.cpp

In line 9 of Listing 30 rd is declared as a reference for the variable d of type double.
Here the symbol & is part of a declaration. Thus, it ha a different meaning than the &
operator, which takes the address of its operand, or the & operator, which performs a
bitwise And of two integer operands. Sending d and rd to cout indicates that both
have the same value. Changing the value of rd in line 12 by using the combined
assignment operator, *=, also changes d. To demonstrate this, d and rd are sent to
cout again. Since a reference cannot be distinguished from a variable, it can also be
used to initialize another reference, as shown in line 15. As the ultimate test of
whether a variable and a reference declared for it are indistinguishable, the
addresses of d and rd are taken and the corresponding pointers are compared for
equality. As the output shows, both pointers have the same value.

It is possible to declare a reference to a pointer. The program shown in Listing 31
declares a reference to a pointer to int named rpi on line 10. Thus, pi and rpi are
different names for the same object.

1 // ReferenceToPointer by Ulrich Eisenecker, March 18, 2021
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int * pi { new int { 42 } };
9 cout << "*pi: " << (*pi) << endl;

10 int *& rpi { pi };
11 if (&pi == &rpi)
12 {
13 cout << "pi and rpi have the same address, "
14 "i.e., they are different names "
15 "for the same object." << endl;
16 }
17 else
18 {
19 cout << "Something is broken." << endl;
20 }

– 88 –

21 cout << "*rpi: " << (*rpi) << endl;
22 delete pi;
23 pi = nullptr;
24 if (!rpi)
25 {
26 cout << "rpi == nullptr" << endl;
27 }
28 else
29 {
30 cout << (*rpi) << " (this should not happen)" << endl;
31 }
32 pi = new int { 99 };
33 cout << "*rpi: " << (*rpi) << endl;
34 delete pi;
35 pi = nullptr;
36 if (!rpi)
37 {
38 cout << "rpi == nullptr" << endl;
39 }
40 else
41 {
42 cout << (*rpi) << " (this should not happen)" << endl;
43 }
44 }

Listing 31: ReferenceToPointer.cpp

This is checked in line 11. Here the addresses of pi and rpi are taken with the
address operator, &, and checked for equality. Since a pointer is also an object that
resides somewhere in memory, it also has an address that is a pointer to a pointer.
As the output shows, both addresses are the same. This proves that pi and rpi are
different names for the same object. Therefore, it is not surprising that rpi points to
the int value 42 in line 21. Deleting pi and assigning nullptr also changes rpi, as
lines 22ff show. As soon as pi points to a new, dynamically allocated object, rpi does
the same.

A reference can be used on the left side of an assignment, i.e., a new value can be
assigned to it, or on the right side of an assignment, i.e., its value can be assigned to
another object. An object that can appear on both sides of an assignment is called
lvalue. An object that can appear only on the right side of an assignment is called
rvalue. C++ allows to declare special rvalue references (Reference Declaration -
Cppreference.Com, n.d.). Rvalue references are covered in detail in (Josuttis, 2020). In
addition to lvalues and rvalues, there are more value categories in C++. See (Value
Categories - Cppreference.Com, n.d.) for detailed information. The actual model of
value categories in C++ is more advanced than the simple distinction between
lvalues and rvalues. However, for this text this simplified distinction is sufficient.

4.2.6. Constants
Sometimes a variable is initialized once and it should not change its value after that.
For example, the variable e of type long double is initialized with a value close to
Euler's number (Listing 32).

– 89 –

1 long double e { 2.71828'18284'59045'23536'02874'71352'66249'77572'47093L }

Listing 32: Euler’s number

Without further precautions, the value of e can be changed anywhere in the
program after e has been initialized. To prevent this, const is prepended to the
definition of e (Listing 33).

1 const long double e { 2.71828'18284'59045'23536'02874'71352'66249'77572'47093L }

Listing 33: Euler’s number as constant

Now the compiler refuses any attempt to change the value of e.

const can be combined with references and with pointers. Since e is now const, it is
not possible to declare an ordinary reference to it. For example, long double &
Euler { e }; is rejected by the compiler because the value of e could be changed
by changing Euler. But it is possible to declare a reference to const (Listing 34).

1 const long double & Euler { e };

Listing 34: Reference to const for const object

Since this reference retains the constness of e, its declaration is perfectly legal. It is
also possible to declare a reference to const for a non-const object (Listing 35).

1 char myChar { 'u' };
2 const char & notReallyConst { myChar };
3 // notReallyConst = 'x'; // Illegal, notReallyConst is a reference to const
4 myChar = 'x'; // perfectly legal
5 cout << notReallyConst << endl; // Value of notReallyConst changed via myChar.

Listing 35: Reference to const for non-const object

Reference to const and const reference should not be confused (“The Incredible
Const Reference That Isn’t Const,” 2018). After a reference is initialized, it cannot be
changed to refer to another object. It does not matter whether it is an ordinary
reference or a reference to a const object. As explained earlier, it is even perfect to
have a reference to const for a non-const object. But a const reference is actually a
reference declared as const. With some effort it is possible to declare such a const
reference, but hopefully the compiler will warn that a const qualifier on a
reference type has no effect.

A pointer can be combined with const in several ways:

1. Define a pointer to a const object.
2. Define a const pointer to an object.
3. Define a const pointer to a const object.

The program shown in Listing 36 illustrates all combinations.
1 // PointerAndConst by Ulrich Eisenecker, March 18, 2021
2
3 #include <iostream>
4 using namespace std;

– 90 –

5
6 int main()
7 {
8 int * pi { new int { 42 } };
9 cout << "*pi: " << (*pi) << endl;

10
11 // pointer to const
12 const int * pci1 { pi }; // pointer to const int
13 int const * pci2 { pi }; // also pointer to const int
14 cout << "*pci1: " << (*pci1) << endl; // Ok, using *pci1 as rvalue
15 // (*pci2) = 99; // Error, pointer to const cannot be modified
16
17 // const pointer
18 int * const cpi { new int { 11 } }; // const pointer to int
19 cout << "*cpi: " << (*cpi) << endl;
20 (*cpi) = 99; // Ok, const pointer points to non-const int
21 cout << "*cpi: " << (*cpi) << endl;
22 delete cpi; // Ok, const pointer may be deleted!
23 // cpi = nullptr; // Error, const pointer cannot be modified
24 // --> invalid pointer
25
26 // const pointer to const
27 const int * const cpci1 { pi }; // const pointer to const int
28 int const * const cpci2 { pi }; // also const pointer to const int
29 // (*cpci1) = 99; // Error, const int cannot be modified
30 // cpci1 = cpci2; // Error, const pointer cannot be modified
31 // delete cpci1; // Bad idea! Dynamic object is owned by pi, not by cpci1
32 // cpci1 = nullptr; // Error, const pointer cannot be modified
33 // --> invalid pointer
34 // cpci2 = nullptr; // Error, const pointer cannot be modified
35 // --> invalid pointer
36
37 delete pi; // Ok, *pi is owned by pi, thus it should be released by pi
38 pi = nullptr; // Ok
39 }

Listing 36: PointerAndConst.cpp

In line 8 pi is defined as a pointer to int and initialized with the address of a newly
created int object, which is initialized to 42. In a sense, pi is the owner of this
dynamic object because it was initialized with the address of this object. Because of
this implicit ownership, the dynamic object is released by delete pi; at line 37.
Then pi is assigned nullptr to indicate that it should not be dereferenced.

4.2.6.1. Pointer to const
Lines 11 through 15 in Listing 36 show pointers to const objects. const must come
either immediately before or after the type identifier. Therefore, const int and int
const are equivalent. const int is used more frequently. Next to the right, the
asterisk, *, indicates that a pointer is declared.

As shown in line 14, a dereferenced pointer can be used as rvalue, i.e. its value can
be accessed, but it must not be changed. It must not appear as lvalue (line 15), i.e. it
cannot be assigned a new value, as this would imply changing the const object
pointed to by the pointer. After commenting out line 15, the compiler should
generate an appropriate error message.

– 91 –

4.2.6.2. const Pointer
Line 18 of Listing 36 declares a const pointer to int. If const were placed before the
asterisk, *, it would belong to the type. Therefore, the only valid place for const to
declare a const pointer is directly after the asterisk.

Since the pointer is const, it must be initialized when it is defined. Here it is
initialized with the address of a dynamically created int object with the value 11.
This object can be used as both an rvalue (line 19) and an lvalue (line 20). Line 22
illustrates something important. A const pointer can point to an object that was
created dynamically, as is the case in line 18. Therefore, it must be possible to apply
the delete operator to a const pointer to release the dynamically created object
(line 22). This returns the memory space of the dynamic object to the free store.
However, the value of the pointer is not changed. As line 23 shows, it is not possible
to assign nullptr to the const pointer cpi. Therefore, the recommendation given
earlier cannot be followed. This makes the const pointer very dangerous, since now
it remains invalid without any possibility to change it.

4.2.6.3. const Pointer to const
Lines 27 and 28 of Listing 36 illustrate two ways to declare a const pointer to a
const object. Consequently, both ways are a combination of declaring a pointer to
const and declaring a const pointer.

A possible error is displayed in line 31. In line 27 cpci1 was initialized with the
value of pi. For this reason, cpci1 does not own the object to which pi points.
Nevertheless, it is possible to apply the operator delete to cpci1, which releases the
object owned by pi. Since pi is unaware of this, there is a risk of trying to release
the object a second time by applying the delete operator to cpci1. This would lead
to undefined behavior. As with cpi, cpci1 cannot be assigned nullptr. After delete
cpci1;, cpci1 remains an invalid pointer until the end of its lifetime.

4.2.6.4. Naming
In the PointerAndConst.cpp program (Listing 36), the identifiers for variables were
created systematically. pi can be thought as an acronym of pointer (to) int. Thus, the
name pi reflects the declaration in reverse order. pci2 is an acronym of pointer (to)
const int with an attached cipher. cpci2 can be thought of as an acronym for const
pointer (to) const int. The characters of the two identifiers reverse the order of the
corresponding parts of their declarations. In the connection with the explanation of
complex declarations these identifiers can be regarded as didactically helpful.

– 92 –

The best-known approach to encoding information about type or intended use in
variable names is the Hungarian notation invented by Charles Simonyi (“Hungarian
Notation,” 2021). It was once very popular and has advantages for programming
languages that are not strongly typed. When using modern strongly typed
programming languages, this naming convention is rather unadvisable. First, types
would be represented twice, as the type itself and in the name of a variable of that
type. Second, in object-oriented programming, the dynamic type of an object may
vary, and generic programming supports writing code independent of concrete
types. In these cases, it would be pointless to encode type information in variable
identifiers.

4.3. More About Functions
Functions have already been mentioned several times, e.g., in the Sections main()
Function – First Information , Unit Tests and Example for Debugging . Although
functions are not mandatory for Turing-completeness, they are a very important
concept of programming languages. Their most important purpose is to assist
human programmers by satisfying the following criteria:

1. The implementation of a function should be of limited size. Perhaps a
maximum length of 24 lines, none of which exceeds 80 columns, is a well-
chosen upper limit. Longer implementations take too much time to read and
to understand. If a function implementation is longer, it should be split into
several functions.

2. A function should be well named. Its name should be concise and express the
intention of the function. Anything else is misleading. Like a variable
identifier, the name of a function helps the human programmer to read,
understand, remember and recognize the code.

3. A function should serve a single purpose, i.e., a) it either performs a com-
putation, b) it takes an input, c) it produces an output, or d) it implements an
interaction, i.e., a sequence of related inputs and outputs, with an actor, e.g., a
human user or another program. In doing so, it may call any necessary
functions which may fall into any of the four categories. A function should
not serve more than one of these purposes. It is acceptable for a function to
additionally check whether it can perform its task without error or to correct
error conditions reported to it, e.g., by a caught exception. However, this
should not excessively increase the size of the function.

Like the Checksum.cpp program (Listing 9), the program in Listing 37 calculates the
checksum of a natural number. But there are some differences:

1. The variables number and checksum are of type unsigned int, not unsigned
long int. This is only a minor difference.

– 93 –

2. Calculating the checksum is part of main(), there is no separate function for
it.

Here, the checksum is calculated iteratively using a while loop. The checksum()
function in the Checksum.cpp program has a recursive implementation instead.

The main() function in the ChecksumMain.cpp program (Listing 37) has only 18
lines. This is a moderate size that does not in itself require subdivision into further
functions.

1 // ChecksumMain by Ulrich Eisenecker, November 24, 2023
2
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << "Natural number: " << flush;
9 unsigned int number {};

10 cin >> number;
11 unsigned int checksum {};
12 while (number > 0)
13 {
14 checksum = checksum + number % 10;
15 number = number / 10;
16 }
17 cout << "Checksum = " << checksum << endl;
18 }

Listing 37: ChecksumMain.cpp

The name main() says nothing about the intention of the function, apart from the
fact that it serves as an entry point for starting the program. It certainly does not
serve only one purpose. It reads in a value, it calculates a value, and it outputs the
calculated value. Reading the input and generating the output belong together and
form an interaction. The user provides an input and receives a corresponding
output. main() thus has two purposes, performing a calculation and perform an
interaction. Combination with the shallow name, this is a strong argument for
introducing an additional function.

Therefore, this program is rewritten as shown in Listing 38. In the new version, a
separate function for calculating the checksum is introduced. Both programs should
be identical in terms of their functionality and external behavior. The process of
restructuring a program or a part of a program is called refactoring.

1 // ChecksumFunction by Ulrich Eisenecker, November 24 2023
2
3 #include <iostream>
4 using namespace std;
5
6 unsigned int checksum(unsigned int number)
7 {
8 unsigned int result { };
9 while (number > 0)

10 {
11 result = result + number % 10;
12 number = number / 10;

– 94 –

13 }
14 return result;
15 }
16
17 int main()
18 {
19 cout << "Natural number: " << flush;
20 unsigned int number { };
21 cin >> number;
22 cout << "Checksum = " << checksum(number) << endl;
23 }

Listing 38: ChecksumFunction.cpp

The program in Listing 38 has two functions and 23 lines of source code, or shorter,
lines of code (abbr. LoC). Compared to its predecessor, the number of functions has
doubled, and the LoC is increased by 27.8 %. A larger program takes more time to
read and can be more difficult to understand. In fact, the original version has a ratio
of 18 LoC per function, while the refactored version has a ratio of only 11.5 LoC per
function. This decrease may indicate that each function is actually easier to read
and understand.

The checksum() function takes one parameter, namely number for which the
checksum is to be calculated. It defines the variable result of type unsigned int
and initializes it to 0. This variable is needed for the iterative calculation of the
checksum. Its name is appropriate, because it actually contains only intermediate
results and finally the final result that checksum() returns to the caller. This
function is short, has a meaningful name and a single purpose.

The main() function of the revised program is considerably shorter compared to the
main() function of its predecessor. All the code for calculating the checksum has
been moved to the checksum() function. Only the interaction with the user is still
present in main(), which is a clear single purpose.

Also, main() is now easier to understand. In the previous version, it is difficult to
figure out what the calculations do. By calling the checksum() function, the purpose
and implementation of main() are now easier to understand.

Overall, the refactoring can be considered successful. All these improvements are
only relevant for the human programmer. The refactoring does not bring any
advantage for the compiler.

The checksum() function illustrates another purpose for creating functions.
Whenever a set of instructions corresponds to a mathematical function, it is worth
thinking about implementing it as a function. Therefore, a mathematical function
should have its counterpart as a function in a program.

The only effect of the checksum() function is that it returns a value. This value must
therefore be used in some way for the call of the function to have any effect at all. It
is a legacy of C, the predecessor of C++, that the return value of a function can

– 95 –

simply be ignored, e.g., checksum(42);. To prevent this, it is possible to declare the
function with the [[nodiscard]] attribute, as shown in Listing 39.

1 [[nodiscard]] unsigned int checksum(unsigned int number)
2 {
3 // ...

Listing 39: checksum() with [[nodiscard]] attribute

Now the compiler issues a warning if the return value is not used at all. It is
recommended to use [[nodiscard]] whenever the only effect of a function is to
return a value.

4.3.1. Declaration vs. Definition
In C++ it is important to distinguish between declaration and definition. In general, a
declaration introduces a name and a meaning, so that the entity is known to the
compiler. A definition introduces additional information so that the entity can
also be used in any way, e.g. required memory for data or code or the structure of
a data type. In the case of a function, the declaration corresponds to the so-called
function prototype, and the definition additionally includes the function
implementation.

In the code snippet of Listing 40, the declaration that is italicized is also a definition
of the isEven() function.

1 bool isEven(int number)
2 {
3 if (number % 2 == 0)
4 {
5 return true;
6 }
7 else
8 {
9 return false;

10 }
11 }
12
13 int main()
14 {
15 // ...
16 }

Listing 40: Declaration, which is also a definition

This is because there is no preceding declaration without a definition. Therefore,
this declaration is both a declaration and a definition. After this declaration, which
is also a definition, the function isEven() can be called in function main().

The code snippet shown in Listing 41 contains a declaration of the isEven()
function, which is in bold, and its definition, which is in italics.

1 bool isEven(int number);
2

– 96 –

3 int main()
4 {
5 // ...
6 }
7
1 bool isEven(int number)
2 {
3 if (number % 2 == 0)
4 {
5 return true;
6 }
7 else
8 {
9 return false;

10 }
11 }

Listing 41: Declaration and separate definition

After the declaration without definition the isEven() function can be also used in
the main() function. But without the definition that follows main(), the program
cannot be linked because the implementation of isEven() is missing. In fact, the
definition of isEven() could be placed somewhere between the declaration of
isEven() and main(), after the implementation of main() (as shown here), or it
could be part of another source file that had to be compiled and linked along with
the object file containing main().

It would be syntactically legal to omit the name of the parameter in the function
declaration, i.e., bool isEven(int);. However, this should never be done because
the names of the parameters in the function declaration may have meaning for
other programmers.

In C++, the so-called One Definition Rule (abbr. ODR) states that an entity may
have several (identical) declarations, but only one definition. A violation of the
ODR, e.g. by providing two differing definitions for an entity or by repeating a
definition in the same translation unit, leads to a compilation error.

4.3.2. Passing Parameters and Returning Results
A function declaration can contain zero or more parameters. For each parameter it
is necessary to specify how it will be passed when the function is called. It is
possible to provide default values for parameters that will be used when the
function is called with fewer parameters. These default values can be omitted from
right to left. It is also possible to declare functions that accept any number of
parameters. In addition, there can be multiple functions with the same name, as
long as they differ in the number or types of their parameters. This is called
overloading and will be also discussed. When declaring functions, the programmer
must be aware of possible conflicts that may arise from combining the above
possibilities when declaring functions.

– 97 –

There are also several ways to return results of function calls, which will also be
explained.

4.3.2.1. Call by Value
All functions presented so far use call-by-value as the mechanism for passing
parameters. When a parameter is passed by value, it is copied before entering the
function. In the function itself, the copy is accessed by the name specified in the
declaration. Within the function this copy can also be changed, but this only affects
the current execution of the function. However, this has no effect on the actual
parameter with which the function was called, since only its copy is affected by this
change.

The program in Listing 42 illustrates the aforementioned details.
1 // CallByValue by Ulrich Eisenecker, April 1, 2021
2
3 #include <iostream>
4 using namespace std;
5
6 void someFunction(double number)
7 {
8 cout << "Entering someFunction() ... \n"
9 << "Memory address of number = "

10 << (&number)
11 << endl
12 << "Value of number = "
13 << number
14 << endl;
15 number = number * 2.0;
16 cout << "New value of number = "
17 << number
18 << "\n... leaving someFunction()"
19 << endl;
20 }
21
22 int main()
23 {
24 double number { 21.0 };
25 cout << "In main() ...\n"
26 << "Memory address of number = "
27 << (&number)
28 << endl
29 << "Value of number = "
30 << number
31 << endl;
32
33 someFunction(number);
34
35 cout << "... back in main()\n"
36 << "Memory address of number = "
37 << (&number)
38 << endl
39 << "Value of number = "
40 << number
41 << endl;
42 }

Listing 42: CallByValue.cpp

– 98 –

The function someFunction() has only one parameter named number, which is of
type double and passed by value. First, someFunction() outputs the memory
address of number. This is the address of the local variable number. Then the current
value of number is sent to cout. Next, the local variable number is changed. This
change is effective, as shown by sending number to cout again.

In main() number is declared as double and initialized with 21.0. Then its memory
address and its value are sent to cout. Then someFunction() is called with number as
parameter. Finally, the memory address and the value of number are sent to cout
again.

Figure 20 shows a sample dialog for running this program, assuming that the
program has been compiled into an executable called CallByValue.
./CallByValue
In main() ...
Memory address of number = 0x7ffeec17aaf8
Value of number = 21
Entering someFunction() ...
Memory address of number = 0x7ffeec17aac8
Value of number = 21
New value of number = 42
... leaving someFunction()
... back in main()
Memory address of number = 0x7ffeec17aaf8
Value of number = 21

Figure 20: Sample dialog for executing the CallByValue.cpp program

In a command line window (also called terminal or shell) of Unix-like operating
systems, the name of an executable binary program must be preceded by the path
where it is located. The dot stands for the active directory and the slash separates
the directory name from the name of the program, which here is simply CallByValue
(without extension).

Executing this program a second time or on another platform, the addresses of
number in main() and number in someFunction() may differ. The important
observation is that number in someFunction() and number in main() have different
addresses. This is because number in someFunction() is a new variable which is
initialized with the value of the passed parameter. The local variable in
someFunction() can be changed, and this change is subsequently effective, but only
as long as the current execution of someFunction() is active. As soon as
someFunction() terminates, the local variable number of someFunction() is
destroyed. number in main() is not affected by the change of its local copy in
someFunction().

The primary effect of passing a parameter by value is that the original parameter
cannot be changed within the function. The ability to change the value of the copied
parameter within the function is usually not of interest and may even be undesired.

– 99 –

To prevent the copied parameter from being changed, it can be passed as a const
parameter. Accordingly, someFunction() has to be defined as shown in Listing 43.

1 void someFunction(const double number)
2 // …

Listing 43: Pass call-by-value parameter as const

Now the compiler reports an error at line 15 of Listing 42, where number is assigned
a new value.

Call by value is the only parameter passing mechanism available in C. C++ provides
additional mechanisms for passing parameters for various purposes. Some authors,
e.g., (Breymann, 2023) and (Gregoire, 2020), recommend passing parameters of
fundamental types by value in general, additionally declared as const, if they must
not be modified locally. They argue that this is the most efficient parameter passing
mechanism for data types that have fewer or the same number of bytes as the CPU's
word width, which is typically 64 bits, because the CPU processes a word in a single
step. But there is no advantage of passing a byte over passing a double by value, and
larger data types incur more overhead. The alternative, passing a parameter as a
reference to const, presented later, incurs a constant overhead for passing all types
of parameters that is comparable to the call by value. Therefore, passing a
parameter by value or as a const parameter by value is discouraged in this text.
Exceptions are parameters of recursive functions that must be passed by value in
order to allow recursion, or cases where changing the local copy of a parameter
allows a shorter implementation.

4.3.2.2. Call by Pointer
In C, call by value is the only mechanism for passing parameters. Therefore, passing
a large data type to a function takes time to create the copy, and the copy consumes
memory. In addition, it is not possible to change the parameter passed by value. By
passing a pointer by value, both problems can be circumvented.

The program in Listing 44 illustrates passing a pointer by value.
1 // CallByPointer by Ulrich Eisenecker, April 6, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 using namespace std;
6
7 void prependSalutation(string * name)
8 {
9 cout << "Entering prependSalutation() ... \n"

10 << "Memory address of name = "
11 << (&name)
12 << endl
13 << "Content of name = "
14 << name // This is a memory address!
15 << endl
16 << "Value of *name = "

– 100 –

17 << (*name)
18 << endl;
19 *name = "Hi, " + *name;
20 cout << "New value of *name = "
21 << (*name)
22 << "\n... leaving prependSalutation()"
23 << endl;
24 }
25
26 int main()
27 {
28 string yourName { };
29 cout << "In main() ...\n"
30 << endl
31 << "Your name: "
32 << flush;
33 cin >> yourName;
34 cout << "Memory address of yourName = "
35 << (&yourName)
36 << endl
37 << "Value of yourName = "
38 << yourName
39 << endl;
40
41 prependSalutation(&yourName);
42
43 cout << "... back in main()\n"
44 << "Memory address of yourName = "
45 << (&yourName)
46 << endl
47 << "Value of yourName = "
48 << yourName
49 << endl;
50 }

Listing 44: CallByPointer.cpp

The prependSalutation() function prepends "Hi, " to the string pointed to by the
name parameter. name is of type std::string, which is the type for representing and
manipulating strings that is part of the C++ standard library. To use it, <string>
must be included. The parameter specification string * name states that a pointer
to string named name is passed by value. For this reason, line 41 of Listing 44 uses
the address operator, &, to take the address of the string variable yourName defined
in main(), namely prependSalutation(yourName);. Figure 21 shows an example
dialog for executing the program compiled to an executable binary named
CallByPointer.

– 101 –

./CallByPointer
In main() ...

Your name: Harley
Memory address of yourName = 0x7ffeeea86a68
Value of yourName = Harley
Entering prependSalutation() ...
Memory address of name = 0x7ffeeea869c8
Content of name = 0x7ffeeea86a68
Value of *name = Harley
New value of *name = Hi, Harley
... leaving prependSalutation()
... back in main()
Memory address of yourName = 0x7ffeeea86a68
Value of yourName = Hi, Harley

Figure 21: Sample dialog for executing the CallByPointer.cpp program

Again, the memory addresses may be different if the program is run another time or
on another platform. It is important that the memory address of yourName, which is
passed to prependSalutation() in line 41 of Listing 44 and the memory address of
name in prependSalutation() are different! &yourName is the memory address where
the string yourName starts. This address is passed by value to prependSalutation().
Taking the address of name by &name gives the memory address where the pointer of
the copy of &yourName is located. Thus &name is a pointer to a pointer to string.
Apart from the fact that pointer to string and pointer to pointer to string are
different types, both addresses should be the same if the pointer name had not been
copied when passed to prependSalutation(). It may be more illustrative to look at
the content that name points to, namely *name. This is exactly the address of
yourName in the main() function! So the statement *name = "Hi, " + *name; on
line 19 of Listing 44 actually modifies the string yourName defined in main(). It
should be mentioned that the + operator allows a std::string to be concatenated
with another string, be it a C string (as in this case), or a C++ string. Figure 22
illustrates this scene with pointers.

– 102 –

Figure 22: Variety of pointers

In the program CallByValue.cpp (Listing 42) the value of number can be changed in
the someFunction() function. The same is true for name in prependSalutation()
(Listing 44). It is possible to assign a new value to name. This must be a pointer to
string, e.g. name = name; (which is the most harmless variant of assigning a new
value in this case) which is inserted as the first line in prependSalutation(). To
prevent this, a const pointer must be passed. Therefore, the const keyword must be
placed to the right of the asterisk, namely void prependSalutation(string *
const name). After this change, the assignment name = name; can no longer be
compiled.

Suppose the only purpose of passing a pointer as a parameter would be to save time
and memory for making a copy, but the memory pointed to by the pointer is not to
be changed. In this case, a pointer to a const parameter must be specified.
Unfortunately, this can be done in two equivalent ways:

1. void prependSalutation(const string * name) and
2. void prependSalutation(string const * name).

That is, const must be placed either to the left of the type or to the right of it. In
either case, attempting to modify *name as in line 19 of Listing 44 is no longer
compilable. Besides, void prependSalutation(const string const * name) is

– 103 –

&
na

m
e

na
m

e
&

yo
ur

…
yo

ur
N

am
e

prependSalutation()

main()

pointer to pointer to string

pointer to string

pointer to string

string

syntactically illegal, and the compiler would report an error. Of course, it is possible
to pass a const pointer to a const parameter, for example void
prependSalutation(const string * const name), or void
prependSalutation(string const * const name). In both cases, neither the
pointer itself nor the memory it points to can be modified.

A rather questionable purpose of passing a pointer as a parameter is to change it by
a function. There must be a good reason for this, which is not the case in the
prependSalutation() function. It is better to let the caller of prependSalutation()
decide whether to modify yourName, define a new variable and initialize it with the
result of the function call, send the result to cout without using it further, or to
ignore the result of the function call altogether. Listing 45 shows a corresponding
function declaration that allows all this.

1 string prependSalutation(string * const name)
2 {
3 return "Hi, " + *name;
4 }

Listing 45: const pointer as function parameter

4.3.2.3. Call by Reference
Another mechanism for passing a parameter to a function in C++ is by reference.
Consider a function that takes two natural numbers and calculates the result of
integer division and its remainder. One way to get both results is to pass all
parameters by reference, as the program in Listing 46 shows.

1 // CallByReference by Ulrich Eisenecker, April 6, 2021
2
3 #include <iostream>
4 using namespace std;
5
6 void integralDivision(unsigned int & dividend, unsigned int & divisor,
7 unsigned int & quotient, unsigned int & remainder)
8 {
9 cout << "Entering integralDivision() ... \n"

10 << "Memory address of dividend = "
11 << (÷nd)
12 << endl;
13 quotient = dividend / divisor;
14 remainder = dividend % divisor;
15 }
16
17 int main()
18 {
19 unsigned int dividend { 99 },
20 divisor { 16 },
21 quotient { },
22 remainder { };
23 cout << "In main() ...\n"
24 << "Memory address of dividend = "
25 << (÷nd)
26 << endl;
27
28 integralDivision(dividend,divisor,quotient,remainder);

– 104 –

29
30 cout << "... back in main()\n"
31 << dividend
32 << " integrally divided by "
33 << divisor
34 << " is "
35 << quotient
36 << ", remainder "
37 << remainder
38 << '.'
39 << endl;
40 }

Listing 46: CallByReference.cpp

A reference to a parameter is simply declared by placing an & after the type name
and before the parameter name. The integralDivision() function has four
reference parameters. The first two serve as input parameters, namely dividend and
divisor. The second two serve as output parameters, namely quotient and
remainder. After the function call is completed they contain the corresponding
results.

After compiling the program to an executable file named CallByReference, the dialog
shown in Figure 23 appears.
./CallByReference
In main() ...
Memory address of dividend = 0x7ffee810ca7c
Entering integralDivision() ...
Memory address of dividend = 0x7ffee810ca7c
... back in main()
99 integrally divided by 16 is 6, remainder 3.

Figure 23: Output of the CallByReference.cpp program (Listing 46)

As an example, the addresses of the dividend variable in main() and of the
dividend parameter of integralDivision() are sent to cout. As the dialog shows,
both addresses are identical. That is, dividend in integralDivision() and dividend
in main() are the same object! Here too, the addresses can change if the program is
executed again or on a different platform.

The same is true for all other variables defined in main() that are also passed by
reference to integralDivision(). This effect is only related to the fact that these
parameters are passed by reference, and not to the idiosyncratic fact that the same
names are used for the variables of main() and the parameters of
integralDivision().

Two problems remain. First, the integralDivision() function cannot be called
with literals as the first two parameters, for example, integralDivision(98u, 17u,
quotient, remainder). Second, within the integralDivision() function the first
two parameters could be changed, although the caller would probably not like this,
for example divisor = 0;. Both problems can be easily fixed by passing dividend

– 105 –

and divisor as reference-to-const parameters. Listing 47 shows the correspondingly
updated function prototype.

1 void integralDivision(const unsigned int & dividend, const unsigned int & divisor,
2 unsigned int & quotient, unsigned int & remainder);

Listing 47: integralDivision() function with reference-to-const parameters

Again, it would also be syntactically valid to place const after the type name as
Listing 48 shows.

1 void integralDivision(unsigned int const & dividend, unsigned int const & divisor,
2 unsigned int & quotient, unsigned int & remainder);

Listing 48: Alternative declaration of integralDivision() function

After this change it is possible to call integralDivision(98u ,17u ,quotient,
remainder), where dividend and divisor must not be changed in
integralDivision().

When passing dividend and divisor as reference-to-const parameters, two objects
are in the stack frame of the corresponding function, i.e. they have valid addresses
in the memory. However, literals neither exist in the same memory area as normal
variables nor can their addresses be taken. Rather, for a literal that is used as
parameter, the compiler automatically creates a temporary object of the desired
type that is subsequently passed as a parameter. Since this temporary object is
constant, the compiler assumes that this object is used read-only and can be safely
destroyed when the function is finished.

For this reason, the following general advice is given:

1. A function parameter should be passed by reference to const if its value
is not to be changed by the function.

2. A function parameter should be passed by reference, if it is not possible
to return it as a result of the function.

3. A function parameter must be passed as a value if a) its direct
modification allows a more compact implementation of the function, or
if b) there must be individual instances of this parameter per function
call due to a recursive implementation of the function.

In addition, the C++ compiler can perform a significant optimization when a
parameter is passed by value, which is not possible when it is passed by reference to
const. However, explaining this optimization and describing its requirements is
beyond the scope of this text.

Aside it is possible to pass a pointer by reference, so that a change of the pointer
within the function affects the pointer of the calling site, for example void
someFunction(int * & ip);. This is only mentioned for completeness. The use of
pointers should be avoided.

– 106 –

4.3.3. Returning Results
All mechanisms presented for passing parameters to functions also apply to
returning function results. While a function can take any number of
parameters, it returns none or exactly one result. The way in which a result is
returned is mostly a matter of design and depends on the scope and lifetime of the
result. The details are discussed below.

An example is introduced for illustrative purposes. One transformation that can be
applied to a std::string (in the following just string for brevity) is to reverse the
order of its characters, i.e. Hello becomes olleH.

4.3.3.1. Return Type void
The first variant of such a function assumes that it accepts only one reference
parameter, ref-parameter for short, namely a string to be reversed, and the string
is reversed in itself. Thus, the function returns nothing, that is, its return type is
void. The function prototype that reflects the above assumptions is void
reverseString1(string& s);.

There will be several versions and variants of this function. Therefore, a number is
appended to its name to distinguish them. Before implementing this function, some
more information about the type string is required and the algorithm for reversing
the order of characters must be carefully planned. It should be mentioned that the
C++ standard library already provides the algorithm function template
std::reverse<>() for reversing the elements of a container such as a string. In
professional programming one would normally refrain from implementing an
additional version.

1. The type string has various so-called member functions and member types.
The member type string::size_type specifies the type used to represent
information about the length of a string or to index its elements. A for loop
that explicitly iterates over the individual characters of a string should use a
loop variable of type string::size_type.

2. The member function string::length() returns the actual length of a
string, i.e. the number of its characters, as string::size_type. The member
function string::size() behaves exactly the same. Another alternative is the
free function template std::size<>(), which calls std::string::size() and
returns the result of the function call.

3. The member function string::at(string::size_type pos) returns the
character at position pos as a reference to type char. The characters of a
string s are indexed from 0 to s.length() - 1. If pos is outside this range,
string::at() throws a so-called exception, which causes a run-time error. An
alternative to string::at() is the index operator

– 107 –

string::operator[string::size_type pos], which does not perform a
range check. If pos is out of range, the program behavior is undefined.

4. It is possible to specify string literals in a program. This is done by
appending the suffix s to the string literal, e.g. "This is a C++-string."s.
The string suffix operators – there are others for related string types – are
declared in the namespace std::literals::string_literals, which can
also be accessed through the namespace std::literals or
std::string_literals.

For the planning of the algorithm it is advantageous to consider the details of the
data to be manipulated. Table 10 shows the individual characters of the C++ string
"Hello"s in the last row, their natural indices in the first row and their C++ indices
in the middle row. The natural indices start with 1, the C++ indices with 0.
Regardless of the different indices, the length of "Hello"s is 5.

Natural index 1 2 3 4 5

C++ index 0 1 2 3 4

Character 'H' 'e' 'l' 'l' 'o'

Table 10: C++ string "Hello"s

First, one can imagine reversing a string with natural indices. In this way, the
following positions need to be swapped:

1. 1, 5
2. 2, 4
3. 3, 3

Performing additional permutations, namely 4, 3 and 5, 1, would undo the
permutations already done! Also the swapping of 3 and 3 is superfluous, because it
has no effect. Now 5, which refers to the last character of the string, is replaced by
"Hello"s.length(), or more generally, by s.length(), which will be abbreviated to
l (short for length) in the following.

Still using natural indices, it is now clear that swapping must stop at the position l /
2, whereby / denotes the integer division. The result of an integer division is an
integral value without a decimal places. This gives the last valid value for the 1st

index for swapping, which is called m (short for middle). To calculate the 2nd index to
swap, a (short for alternate index), the current index, let’s call it i (short for index),
must be subtracted from l.

Since the initial value of i is 1, this results in index positions being systematically too
small by 1. Therefore, 1 must be added, which results in l - i + 1. Table 11
summarizes the algorithmic quantities just introduced.

– 108 –

Table 12 shows all pairs of values i, a, i.e., 1st index and 2nd index, calculated
according to Table 11 for values i from 1 to m for "Hello"s, resulting in natural
indices.

Symbol Formula Meaning

l s.length() Length of string

m l / 2 l integrally divided by 2

i [1..m] 1st index for swapping; initial value is 1, last value is m

a l – i + 1 2nd index for swapping

Table 11: Algorithmic quantities for reverting a string (natural index values)

Iteration i (1st index) a (2nd index)

1 1 5

2 2 4

Table 12: Natural index values for reverting “Hello”s

The index positions of Table 12 are calculated according to the natural index
starting with 1. To obtain C++ indices, 1 must be subtracted from each natural index
value. A viable alternative is to adjust Table 11 for C++ index values, which is done
in Table 13.

Symbol Formula Meaning

l s.length() Length of string

m l / 2 - 1 l integrally divided by 2, minus 1 to obtain C++ index

i [0..m] 1st index for swapping; initial value is 0, last value is m

a l - i - 1 2nd index for swapping

Table 13: Algorithmic quantities for reverting a string (C++ index values)

Table 14 shows the value pairs i, a calculated as C++ indices. Additionally, the
corresponding characters of "Hello"s are shown.

Iteration i a s.at(i) s.at(a)

1 0 4 'H' 'o'

2 1 3 'e' 'l'

Table 14: C++ index values for reverting “Hello”s

This way of developing an algorithm for reversing a string may seem tedious and
complicated. Nevertheless, it is thorough and appropriate. First, the problem is

– 109 –

analyzed using the concrete string "Hello"s, which consists of individual characters
referenced by natural indices starting at 1. Second, the problem is generalized to
strings of arbitrary length and formulated in terms of symbols with associated
formulas. Third, the formulas are adapted with respect to C++ indices starting at 0.
These steps form a fundamental pattern of problem solving, namely

1. Analyzing a problem using a concrete example.
2. Creating an abstract description of the problem and working out a

solution to the abstract problem.
3. Refining the abstract solution to fit the actual circumstances.

The program in Listing 49 shows a congruent implementation of this algorithm in
the reverseString1() function and a main() function for testing.

1 // ReturnVoid by Ulrich Eisenecker, April 8, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 #include <algorithm> // because of swap()
6 using namespace std;
7
8 void reverseString1(string & s)
9 {

10 for (string::size_type i { 0 },
11 l { s.length() },
12 m { l / 2 - 1 };
13 i <= m; ++i)
14 {
15 swap(s.at(i),s.at(l - i - 1));
16 }
17 }
18
19 int main()
20 {
21 string someString { };
22 cout << "String: "
23 << flush;
24 cin >> someString;
25 reverseString1(someString);
26
27 cout << "Reversed string = "
28 << someString
29 << endl;
30 }

Listing 49: ReturnVoid.cpp

The implementation of reverseString1() contains exactly one statement, a for
loop. The header of this for loop consists of three parts separated by semicolons. The
first part initializes the variables i, l, and m. These variables are only visible inside
the for loop. As described above, string::size_type is the type of all size- or index-
related members of string. i is explicitly initialized to 0 by { 0 }. Simply { } would
have had the same effect, but for the reader { 0 } may be more concise. l is
initialized to s.length() because it is needed multiple times. Therefore, it is
advisable to cache the result of s.length() in a variable. m is initialized with the
formula for determining the lower half of a string.

– 110 –

It should be noted that depending on the font used by the editor, it is sometimes
difficult to distinguish reliably between 1 and l. To avoid this, a different name could
have been chosen for l.

It is important to emphasize that the commas used here are not the sequence
operator (which is not presented in this text)! Rather, these commas separate the
declarations of the variables used within the for loop. The second part of the header
is the condition that must be true for the loop statement to execute. The last part
increments i by 1 using the pre-increment operator. The loop statement is a
compound statement. This is not mandatory, since it consists of only one statement.
However, as mentioned earlier, a compound statement is used as a loop statement
because it is easier to read and extend. The loop statement simply calls the
std::swap<>() function template. To use it, one of the <algorithm>, <utility>, or
<string_view> header files must be included. swap<>() exchanges the values of the
two variables passed as arguments. To access the individual characters,
string::at() is used. This member function checks if the index passed to it is valid.
The first character to be swapped is accessed with s.at(i), the second with s.at(l
- i - 1). In Tables 11 – 12 the symbol a (for alternate index, i.e. 2nd index) was
chosen for this purpose. Since this value is calculated and used only once, it is
acceptable to insert it directly as an expression.

Now it is time to test. The program has been compiled to an executable file called rv,
and the first test is made with “Hello”. Figure 24 shows the corresponding dialog in
a console window.
./rv
String: Hello
Reversed string = olleH

Figure 24: Test of reverseString1() with “Hello”

“Hello” is an odd-length string. Therefore, the next test is performed with a string of
even length, namely “Hi”. Figure 25 shows the corresponding dialog.
./rv
String: Hi
Reversed string = iH

Figure 25: Test of reverseString1() with “Hi”

Finally, the program is tested with a short string, namely “X” (Figure 26).
./rv
String: X
libc++abi.dylib: terminating with uncaught exception of type std::out_of_range:
basic_string
zsh: abort ./rv

Figure 26: Test of reverseString1() with “X”

– 111 –

This error may seem surprising. How to find the cause of it? One way is to use a
debugger, another option is to send all the variables of the for loop to cout, but the
easiest way is to carefully re-read the for loop with the knowledge of the reported
error in mind. Then all the variables of the for loop are replaced with the actual
values resulting from a string of size 1. This is called a paper-pencil test. Listing 50
shows this process and its result.

1 for (string::size_type i { 0 },
2 l { s.length() 1 },
3 m { l / 2 - 1 -1 };
4 i 0 <= m -1; ++i)
5 {
6 swap(s.at(i 0),s.at(l - i – 1 -1));
7 }

Listing 50: Paper-pencil test of reverseString1() function for “X”

Obviously there is a problem with initializing m to -1! If m were actually initialized to
-1, the condition of the for loop, namely 0 <= -1, would prevent the execution of the
loop statement at all, and the for loop would terminate without error. So the loop
statement must be executed at least once, and the error is probably caused by
passing an invalid index to s.at(). -1 is definitively an invalid index, but the loop
statement would not execute if m is -1. So one might suspect that string::size_type
is an unsigned integral type. If so, subtracting 1 from 0 of string::size_type gives
a very large value. This can be easily checked by placing the statement cout <<
("X"s.length() - 2) << endl; at the beginning of function main().

This prints 18446744073709551615 in the console window, which is a very large
value, and certainly not a valid index position! Of course, this value may be
different with another compiler or on another platform.

The question is how to fix this error. One possibility is to adjust the initialization of m
in the header of the for loop. m could be initialized with 0 for strings of size 1 or less.
Another possibility is to run the for loop only for strings of size 2 or greater. A third
option is to return from the function immediately, if the size of the string is less than
2. For the program in Listing 51, the last option is chosen. The reverseString1()
function has been renamed reverseString2() here.

1 // ReturnVoidImproved by Ulrich Eisenecker, April 8, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 #include <algorithm> // because of swap()
6 using namespace std;
7
8 void reverseString2(string & s)
9 {

10 string::size_type l { s.length() };
11 if (l < 2)
12 return;
13 for (string::size_type i { 0 },
14 m { l / 2 - 1 };
15 i <= m; ++i)
16 {

– 112 –

17 swap(s.at(i),s.at(l - i - 1));
18 }
19 }
20
21 int main()
22 {
23 string someString { };
24 cout << "String: "
25 << flush;
26 cin >> someString;
27 reverseString2(someString);
28
29 cout << "Reversed string = "
30 << someString
31 << endl;
32 }

Listing 51: ReturnVoidImproved.cpp

To avoid calling s.length() more than once, the declaration and initialization of l
has been moved from the initialization part of the for loop header to the beginning
of reverseString2(). If the condition (l < 2) evaluates to true the return
statement terminates the function in a regular way.

After fixing an error or making other changes to a program, it should be
tested again. This shows that the strings “Hello”, “Hi”, and “X” are reversed
correctly. But when entering an empty string, the program does not stop!
Fortunately, this is not a bug of the program but is caused by the behavior of the
input operator >> for string. The >> operator for string will skip any whitespace
character entered until a non-white space character is entered. As soon as another
whitespace character is entered, the >> operator terminates the input and returns
the string just read without whitespaces.

In fact, inputs with preceding or following whitespace or input with more than one
token were not tested. For “...Hello” (the dots stand here for spaces) the program
answers with “olleH”. This means that leading whitespaces are skipped. For
“Hello...” the program also answers with “olleH”. This supports the assumption that
the processing of the input is stopped after the first whitespace. The input of “Hello
Harley” results in “elloH”, which corresponds to the previously described
specification of the behavior of the >> operator for string.

One aspect deserves to be emphasized. The reverseString1() function was
planned with great care, and a lot of work was put into working out the algorithm.
Nevertheless, the resulting function was flawed. What does this say? A problem
and its solution in its original domain require a mapping to a program. This
mapping is neither necessarily simple nor inherently bijective. Therefore, the
specifics and limitations of a program must always be thoroughly analyzed
and understood. Testing helps to evaluate the quality of this mapping in general
and to identify specific limitations. For this reason, testing is an indispensable
activity of software development and should never be neglected.

– 113 –

4.3.3.2. Returning a Reference
The reverseString2() function must be executed as a separate statement. A new
statement is required for each subsequent action involving the reverted string. This
can be easily changed. Since the parameter of reverseString2() is passed by
reference, it is possible to return a reference to that parameter as the result. The
program shown in Listing 52 contains the reverseString3() function, which has
been modified accordingly. The main() function of this program demonstrates an
alternative use of this function.

1 // ReturnReference by Ulrich Eisenecker, April 8, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 #include <algorithm> // because of swap()
6 using namespace std;
7
8 string& reverseString3(string & s)
9 {

10 string::size_type l { s.length() };
11 if (l > 1)
12 {
13 for (string::size_type i { 0 },
14 m { l / 2 - 1 };
15 i <= m; ++i)
16 {
17 swap(s.at(i),s.at(l - i - 1));
18 }
19 }
20 return s;
21 }
22
23 int main()
24 {
25 string someString { };
26 cout << "String: "
27 << flush;
28 cin >> someString;
29
30 cout << "Reversed string = "
31 << reverseString3(someString)
32 << endl;
33 }

Listing 52: ReturnReference.cpp

The reverseString3() function specifies string& as the return type, i.e. it returns a
reference to string. This means that the evaluation of
reverseString3(someString) here is just another name for the string someString,
which is passed as a reference to reverseString3(). This guarantees that the
lifetime of the object returned by reference is not limited by the lifetime of the
called function! Returning a local variable as reference is a serious error. A
compiler will normally warn against this.

The implementation of the function has been changed because a simple return is
not sufficient. Even if the size of the string s is smaller than 2, s must be returned
with return s;. Therefore, the condition was reworded and the for loop was

– 114 –

inserted into a compound statement to follow the recommendation to always use a
compound statement in such cases, even if a single statement would suffice. Since
reverseString3() changes a reference parameter and returns a reference to that
parameter, it can be used in an expression as a function call or in a statement as a
stand-alone procedure call. Therefore, it is not appropriate to prefix its declaration
with the [[nodiscard]] attribute.

As the main() function demonstrates, reverseString3() can now be evaluated as
part of an expression, allowing a more compact formulation for sending the result
to cout.

4.3.3.3. Returning a Value
Since all previous versions require a parameter to be passed by reference to reverse
a string, it is not possible to apply it to a string literal, e.g. "Hello"s. This problem
can be solved by passing a reference-to-const parameter. Listing 53 shows a
program with a corresponding implementation called reverseString4().

1 // ReturnValue by Ulrich Eisenecker, April 8, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 #include <algorithm> // because of swap()
6 using namespace std;
7
8 [[nodiscard]] string reverseString4(const string & s)
9 {

10 string result { s };
11 string::size_type l { result.length() };
12 if (l > 1)
13 {
14 for (string::size_type i { 0 },
15 m { l / 2 - 1 };
16 i <= m; ++i)
17 {
18 swap(result.at(i),result.at(l - i - 1));
19 }
20 }
21 return result;
22 }
23
24 int main()
25 {
26 cout << "Reversed string = "
27 << reverseString4("Hello"s)
28 << endl;
29 }

Listing 53: ReturnValue.cpp

The reverseString4() function returns a string and takes as parameter a
reference-to-const of type string with the name s. Thus, it can be called with a
string variable, an expression evaluating to a string, or a string literal. If
necessary, a temporary string object is created.

– 115 –

Again, the implementation had to be adapted to these changes. First, a local string
variable named result is defined and initialized with s. In this way, result is a
value copy of s. Consequently, the following code was rewritten using result. Thus,
l now contains the size of result, and swap() is applied to the characters of result.
Finally, return result; returns the reversed string as a value. Conceptually, this is
indeed a new object. In practice, C++ tacitly applies performance-related
optimizations so that the number of copies of the function result involved is kept to
a minimum. As main() demonstrates, reverseString4() can also be invoked with a
string literal. Since the returned result is the only effect of reverseString4(), it is
appropriate to prefix its definition with the [[nodiscard]] attribute. This prevents
the result of the function evaluation from being silently ignored.

The reverseString4() function is indeed an example where passing the string s
by value would allow strong optimization by the compiler, as mentioned in the Call
by Reference Section. A closer look reveals that the third piece of advice for passing
a function parameter by value (Section Call by Reference) also applies. As Listing 54
shows, passing string s as a value allows to simplify the function implementation
as demonstrated in reverseString5().

1 // ReturnValue2ndVersion by Ulrich Eisenecker, February 6, 2022
2
3 #include <iostream>
4 #include <string> // because of string
5 #include <algorithm> // because of swap()
6 using namespace std;
7
8 [[nodiscard]] string reverseString5(string s)
9 {

10 string::size_type l { s.length() };
11 if (l > 1)
12 {
13 for (string::size_type i { 0 },
14 m { l / 2 - 1 };
15 i <= m; ++i)
16 {
17 swap(s.at(i),s.at(l - i - 1));
18 }
19 }
20 return s;
21 }
22
23 int main()
24 {
25 cout << "Reversed string = "
26 << reverseString5("Hello"s)
27 << endl;
28 }

Listing 54: ReturnValue2ndVersion.cpp

– 116 –

4.3.3.4. Designing a Function
Of course, a function can also return a pointer. Also, a value and a reference can be
returned as const, and a pointer can be returned as a reference. However, this is
only useful in rare cases. In general, the following advice can be given for the design
of functions:

1. Normally, a function should only take reference-to-const parameters and
return a value as the result of its evaluation.

2. A function should return void if it is designed as a procedure. In that case, it
should specify at least one reference parameter to be changed as a
consequence of executing the function, unless its sole purpose is to produce a
side effect, such as sending the value of its parameter(s) to cout.

3. When a function calculates more than one result, it may be appropriate to
pass a corresponding number of reference parameters.

One restriction must be mentioned: The above advice applies only to functions as
being presented so far (so-called free functions). It is not complete with respect to
member functions, which will be presented in more detail later.

4.3.4. Parameters with Default Values
Sometimes, functions have parameters that are called very often with the same
value. For example, estimating the range of a car depending on the fuel remaining
in the tank and the fuel consumption, expressed as the ratio of distance traveled
and fuel consumed. Listing 55 shows the prototype of a corresponding function. The
only effect of this function is to return the calculated value. Therefore, it should be
declared with the [[nodiscard]] attribute. This has been omitted for the sake of
brevity.

1 double estimatedRange(const double & remainingFuel,
2 const double & consumedFuel,
3 const double & distanceTraveled);

Listing 55: Prototype of the estimatedRange() function

This prototype does not specify the units of its parameters and its return value. In
principle, this function works for any system of units, e.g. gallons and miles or liters
and kilometers, but the units of the current parameters must match when the
function is called. Typically, the fuel consumption is expressed as a ratio of fuel
volume to 100 distance units. Default values for parameters can be used to capture
both cases of the function call (Listing 56).

1 double estimatedRange(const double & remainingFuel,
2 const double & consumedFuel,
3 const double & distanceTraveled = 100.0);

Listing 56: Prototype of estimatedRange() function with default parameters

– 117 –

Now, it is possible to call estimatedRange() with three or two parameters, for
example cout << estimatedRange(25.5, 12.0, 200.0) << endl; or cout <<
estimatedRange(25.5, 6.0) << endl;.

In the second case, the compiler inserts the default value for the third parameter as
specified in the prototype with = 100.0.

Two restrictions apply:

1. If there is only one function definition, it must contain all default values. If
there is a function declaration, i.e. a prototype, and the function definition, all
default values must be contained exclusively in the function declaration, i.e.
the prototype of the function. A separate function definition should not
contain default values for parameters.

2. Default values for parameters must be specified from right to left.
Accordingly, parameters may only be omitted from right to left. It is not
possible to omit an intermediate parameter.

The use of default values for parameters should be thoroughly considered. In
addition, they should be explicitly documented, either in a comment or in a so-
called documentation comment, from which corresponding documentation is
generated automatically. Documentation comments and tools for the automatic
documentation generation will be discussed later.

4.3.5. Function Overloading
In C++, functions can have the same name as long as they differ either by the
number of their parameters, the type of their parameters, or both. This is called
overloading. Listing 57 shows how the functions for estimating the remaining range
are implemented by overloading. Here, the overloaded functions accept a different
number of parameters. The compiler selects a particular overloaded function with
respect to the number of the parameters provided by the function call.

1 // Overloading by Ulrich Eisenecker, April 16, 2021
2
3 #include <iostream>
4 #include <iomanip> // because of fixed and setprecision()
5
6 using namespace std;
7
8 [[nodiscard]]
9 double estimatedRange(const double & remainingFuel,

10 const double & consumedFuel,
11 const double & distanceTraveled);
12 [[nodiscard]]
13 double estimatedRange(const double & remainingFuel,
14 const double & consumedFuel);
15
16 int main()
17 {
18 cout << fixed << setprecision(2)

– 118 –

19 << "Estimated remaining range = "
20 << estimatedRange(30.0,6.0) // arguments are liters
21 << " km\n" // and liter per 100 km
22 << "Estimated remaining range = "
23 << estimatedRange(15.0,12.0,200.0) // arguments are liters,
24 // liters, and km
25 << " km"
26 << endl;
27 }
28
29 double estimatedRange(const double & remainingFuel,
30 const double & consumedFuel,
31 const double & distanceTraveled)
32 {
33 return remainingFuel / (consumedFuel / distanceTraveled);
34 }
35
36 double estimatedRange(const double & remainingFuel,
37 const double & consumedFuel)
38 {
39 return estimatedRange(remainingFuel,consumedFuel, 100.0);
40 }

Listing 57: Overloading.cpp

Lines 8 through 14 declare both function prototypes. Unlike in the Parameters with
Default Values Section, both function declarations are prefixed with the
[[nodiscard]] attribute. In the main() function, each overloaded function is called
and the corresponding results are sent to standard output. For appropriate
formatting, the fixed and setprecision() manipulators are used. Therefore, the
header file <iomanip> is included. The definitions of the overloaded functions follow
after main().

There is one interesting aspect. The estimatedRange() function with three
parameters has a simple but functionally complete implementation. However, it
does not check possible error conditions, such as negative values, or values that
cause division by zero. The other estimatedRange() function does not have its own
fully functional implementation. Instead it calls estimatedRange() with three
parameters with 100.0 as current value for the third parameter. This is, of course, a
nice design. Suppose error checking were added to estimatedRange() with three
parameters, the other overloaded variant would not have to be changed. Their
implementations would quietly benefit from the change to the implementation of
the first overloaded function.

Nevertheless, it is necessary to compare it with the solution presented in the
Parameters with Default Values Section. When using default parameters, only one
function is required. This is more economic than maintaining two functions. Also,
one of the overloaded functions – not necessarily, but in this case – is tightly coupled
to the other overloaded function. This is bad because it is no longer possible to
change one of them without considering the other. Moreover, if both overloaded
functions had redundant implementations, the changes would have to be applied
consistently to all of them. Therefore, in the present case, the design with only one

– 119 –

function that uses default values for parameters is preferable to the design with two
overloaded functions. This is different in a situation where the name of the
overloaded function expresses a close semantic relationship, while the
implementations of the functions are different. For example, the operators +, -, *,
and / apply to both integral and floating-point arithmetic. But for each kind of
arithmetic these operators are implemented differently. Therefore, the decision
between using default values for function parameters and overloading must be
carefully weighed. Using both options at the same time is not allowed, since the
compiler cannot decide between ambiguous function calls.

The following variants of the program in Listings 58, 59, and 60 illustrate
overloading based on different types. They also demonstrate the subtleties of
passing parameters by value.

1 // MoreOverloading_A by Ulrich Eisenecker, April 18, 2021
2
3 #include <iostream>
4
5 using namespace std;
6
7 int timesTwo(int number)
8 {
9 cout << "timesTwo(int) ";

10 return number << 1;
11 }
12
13 int main()
14 {
15 double d { 3.0 };
16 const double dc { 4.0 };
17 cout << timesTwo(1)
18 << endl
19 << timesTwo(2.0)
20 << endl
21 << timesTwo(d)
22 << endl
23 << timesTwo(dc)
24 << endl;
25 }

Listing 58: MoreOverloading_A.cpp

The program in Listing 58 defines the timesTwo() function. It implements a
multiplication by 2 that is specialized for int. Shifting the bits of an int value one
position to the left gives the same result as multiplying it by 21. Shifting two
positions to the left corresponds to a multiplication by 22, and so on. For signed
integers, this may not result in setting the MSB, and for unsigned integers, no set bit
may be shifted out to the left. This function has one parameter of type int which is
passed by value. So the function accepts anything that is of type int or anything that
can be automatically converted to an int. It copies or converts this value and uses it
as a local parameter. As shown in Listing 58, the function accepts an int literal, of
course, but it also accepts a variety of double values as well. It also accepts chars,
other int types, and any floating-point type. Normally, functions that compute

– 120 –

values should not produce output. Here, a message identifying the called function is
sent to cout.

1 // MoreOverloading_B by Ulrich Eisenecker, April 18, 2021
2
3 #include <iostream>
4
5 using namespace std;
6
7 int timesTwo(int number)
8 {
9 cout << "timesTwo(int) ";

10 return number << 1;
11 }
12
13 double timesTwo(double number)
14 {
15 cout << "timesTwo(double) ";
16 return number * 2.0;
17 }
18
19 int main()
20 {
21 double d { 3.0 };
22 const double dc { 4.0 };
23 cout << timesTwo(1)
24 << endl
25 << timesTwo(2.0)
26 << endl
27 << timesTwo(d)
28 << endl
29 << timesTwo(dc)
30 << endl;
31 }

Listing 59: MoreOverloading_B.cpp

Listing 59 overloads the timesTwo() function for double. This function uses
conventional multiplication to double the value of its parameter, since bit shifting is
not suitable for floating-point numbers.

As the output proves, timesTwo(int) is now called exclusively for the int literal. In
all other cases timesTwo(double) is called. To distinguish overloaded functions in
written text, it is a common to specify the types of their parameters, as it is done
here.

The question is now whether it is possible to further distinguish between the
available parameter variants? Yes, it is possible, as the program in Listing 60 shows.

1 // MoreOverloading_C by Ulrich Eisenecker, April 19, 2021
2
3 #include <iostream>
4
5 using namespace std;
6
7 int timesTwo(int number)
8 {
9 cout << "timesTwo(int) ";

10 return number << 1;
11 }
12

– 121 –

13 double timesTwo(const double& number)
14 {
15 cout << "timesTwo(const double&) ";
16 return number * 2.0;
17 }
18
19 double timesTwo(double& number)
20 {
21 cout << "timesTwo(double&) ";
22 return number * 2.0;
23 }
24
25 double timesTwo(double* number)
26 {
27 cout << "timesTwo(double*) ";
28 return 2.0 * *number;
29 }
30
31 double timesTwo(const double* number)
32 {
33 cout << "timesTwo(const double*) ";
34 return (*number) * 2.0;
35 }
36
37 int main()
38 {
39 double d { 3.0 };
40 const double dc { 4.0 };
41 cout << timesTwo(1)
42 << endl
43 << timesTwo(2.0)
44 << endl
45 << timesTwo(d)
46 << endl
47 << timesTwo(&d)
48 << endl
49 << timesTwo(&dc)
50 << endl;
51 }

Listing 60: MoreOverloading_C.cpp

Most importantly, timesTwo(double) has been removed. Otherwise it would conflict
with the other overloaded functions. The overloaded function timesTwo(const
double&) is called for the double literal 2.0. In this case, the compiler creates a copy
because the const parameter must no be changed. Thus, the temporarily created
object can be discarded after the function call is completed. The overloaded
function timesTwo(double&) is called for the double variable d. In principle, d could
be changed within the function. If timesTwo(double&) were not present,
timesTwo(const double&) would be called for d as well. This can be easily
demonstrated by turning timesTwo(double&) into a comment. The
timesTwo(double&) function is included here only for completeness. Without the
requirement to actually change the parameter, this function would not exist.

Two more overloaded variants have been added, namely for a pointer to double,
and a pointer to const double. As the output shows, these functions are called for
the address of a double variable and the address of a const double variable. The
implementation of timesTwo(double* number) shows an interesting detail, namely

– 122 –

return 2.0 * *number. The first occurrence of * refers to the multiplication
operator and the second occurrence refers to the dereference operator. Symbols
and keywords that change their meaning depending on the context contribute
to the difficulty of writing and reading programs in C++. Therefore, it is
important to provide additional clues to the human programmer so that they can
more easily recognize what is meant by expressions and statements. For this reason,
number is enclosed in parentheses in timesTwo(const double), although this is
not necessary for the compiler. Another detail is that the expression is now changed
back to (*number) * 2.0 again. For many people it is more natural to read return
number times two than return two times number.

There are other possibilities of overloading based on the parameter type, which are
not discussed here.

4.3.6. Specifying Pointers, References, and Constness
Before the program shown in Listing 60, the asterisk for declaring a pointer was
placed midway between the type and the variable, e.g. int * ip, and surrounded
by spaces. The same was done with the ampersand when defining a reference or
specifying a reference parameter, e.g. string & s. Syntactically, there is no
difference between placing the asterisk or ampersand immediately after the type,
before the variable name, or between any number of whitespaces. The question is:
Which formatting is the most appropriate? The program in Listing 61 provides some
arguments.

1 // AsteriskAndAmpersand.cpp by Ulrich Eisenecker, April 20 2021
2
3 int main()
4 {
5 int * pointerToInt { nullptr }, anInt { 42 };
6
7 double d { 99.0 };
8 double & referenceToDouble { d }, aDouble { 100.0 };
9 }

Listing 61: AsteriskAndAmpersand.cpp

Line 5 contains two definitions with initializations of variables in one statement.
The first one is preceded by an asterisk, the second one is not. So the first is a
pointer to int, and the second is an ordinary int variable. That is, the asterisk is
significant only for the immediately following variable name, but not for all other
variable names that follow. This can be easily checked by swapping the
initializations, namely int * pointerToInt { 42 }, anInt { nullptr };. Now the
compiler reports two errors regarding invalid initialization values.

Line 8 contains similar code, but now an ampersand is used to declare a reference
to double. Again, the ampersand is only relevant for the following name, but not for
further following names. The check is even simpler, since it is sufficient to replace d

– 123 –

in the reference initialization with a literal, for example, 100.0. In this case, the
compiler issues an error because it cannot initialize a reference with a temporary
object.

This is an argument to put the asterisk or ampersand immediately before the name
of the variable for which it is relevant. Listing 62 shows how lines 5 and 8 will then
look.

1 /* 5 */ int *pointerToInt { nullptr }, anInt { 42 };
2 /* 8 */ double &referenceToDouble { d }, aDouble { 100.0 };

Listing 62: * and & placed immediately before the variable name

If the next name is also to be a pointer or reference, the corresponding symbol must
again be placed immediately before it, for example int *ip1, *ip2;.

Otherwise, mixing declarations of pointers or references with normal variables
could be perceived as confusing. In addition, all information relevant to an
identifier can be found in exactly one place which is easier to read.

Therefore, pointers or references should be declared only once per declaration
statement, and the asterisk or the ampersand should be placed immediately after
the type. Listing 63 shows how lines 5 and 8 would then look.

1 /* 5 */ int* pointerToInt { nullptr };
2 /* 5 */ int anInt { 42 };
3 /* 8 */ double& referenceToDouble { d };
4 /* 8 */ double aDouble { 100.0 };

Listing 63: & and & placed immediately after the type

Although more verbose, this formatting will be the used from now on. It does not
preclude defining more than one ordinary variable in a single definition statement,
for example, int i, j, k;. Later, aliases are introduced for type definitions. They
allow multiple pointers or references to be declared in a single statement without
using asterisks or ampersands.

It is worth mentioning that this problem does not occur when specifying function
parameters, since each function parameter must be specified on its own.

With const, the situation is somewhat different. As the program in Listing 64
illustrates, using const in a definition affects all subsequent variables. Thus, placing
const after the type might give the impression that it refers only to the immediately
following name. Also, const is an important property. It seems appropriate to
emphasize it by prepending it to a definition. It should be noted that the program
shown in Listing 64 is not compilable.

1 // EffectOfConst.cpp by Ulrich Eisenecker, April 20 2021
2
3 int main()
4 {
5 const int ic1 { 1 }, ic2 { 2 };
6 ic1 = 3; // Error, ic1 is const

– 124 –

7 ic2 = 4; // Error, ic2 is const
8 }

Listing 64: EffectOfConst.cpp

4.3.7. Recursion
To complete this introduction to function basics, some more details about recursive
functions must be given. They have already been mentioned in the Turing-
Completeness Section, and the Checksum.cpp program in Listing 9 already showed a
recursive function.

As explained earlier, a recursive function is implemented in such a way that it calls
itself either directly or indirectly. The underlying principle is to break a problem
into smaller, self-similar parts until an elementary part can be solved easily. The
result is then returned to the caller, which uses it to complete its computation, and
so on. Recursive implementations often follow mathematical definitions and
provide elegant solutions.

Looking again at the mathematical definition of the factorial function from the
Section Turing-Completeness , shows that it actually involves two functions:

factorial (n)=n⋅factorial (n−1)
factorial (0)=1

The first function accepts as argument a natural number greater than 0, the second
function defines the result for the argument 0. Unfortunately, this cannot be
realized with function overloading in C++, since a function cannot be overloaded for
a specific literal value. But the trivial case of computing the factorial of 0 is
necessary to terminate the recursion. Otherwise, calling the first function would
lead to an infinite recursion. For this reason, a recursive function must provide
termination. Usually, an if statement checks in its condition whether the
termination criterion is reached and performs appropriate calculations if it is true,
otherwise calling itself with at least one appropriately modified argument.

In C++, a new stack frame is created for each recursive function call. This is
expensive in terms of memory consumption and efficiency. Therefore, it is
recommended to provide iterative function implementations in the first place, as
they perform better. Exceptionally, a recursive function is acceptable if it either
contributes to a better understanding of the computation it implements and serves
as a reference point for working on an equivalent iterative function
implementation, or if it has an extremely elegant implementation and it can be
reliably predicted that its invocation will result in moderate cost in terms of
memory consumption and performance.

– 125 –

5. User-defined Types
The C++ language core includes a large number of fundamental types, and the C++
standard library adds an overwhelming number of additional types. Still, many
programs need new types that are specific to application domains. They make it
easier for human programmers to read and understand the program. They can also
make it possible to write more concise programs and optimizations.

Following, it will be presented how to define and use so-called enumeration types.
Afterwards, it will be explained how to define types for grouping related data.
Eventually, abstract data types and classes will be introduced, which group related
data plus related operations using these data.

5.1. Enumeration Types
There are many grading systems, for example, for pupils, for students, and for PhD
candidates. Table 15 shows a common grading system for doctorates in Germany.

Latin name German name Quantification

summa cum laude mit Auszeichnung < 1.0

magna cum laude sehr gut 1.0

cum laude gut 2.0

rite bestanden 3.0

non sufficit nicht bestanden > 3.0

Table 15: Common German Grading System for Doctorates

Interestingly, there is a great deal of agreement between universities on Latin
names, but not so much on German names and especially not on quantifications.
Therefore, when a program processes doctoral grades, the question arises as to
which type should be used to represent grades.

One possibility would be to use int, where 0 stands for summa cum laude, 1 for
magna cum laude, and so on. Unfortunately, the declaration int grade; does not
prevent grade from being assigned the values -1 or 5. Furthermore, it is not obvious
that the variable named grade really and exclusively represents doctoral grades.

Using the type char with the values 'A', 'B', 'C', etc. would only be an obfuscation
of the previous problem. Worse, these values are not in the table at all.

An interesting alternative would be to use the type std::string to represent the
grades "summa cum laude"s, "magna cum laude"s, and so on. Unfortunately, the
type std::string is no more specific than int or char, and it is still possible to

– 126 –

assign incorrect values. Moreover, the lexicographic comparison "summa cum
laude"s < "magna cum laude"s is not evaluated as true.

Enumeration types and enumerators provide an elegant solution to this problem.
The program shown in Listing 65 demonstrates how to define the enumeration type
PhDGrade (an abbreviation of Philosophy Doctor Grade) and its enumerators.

1 // Grades.cpp by Ulrich Eisenecker, April 23, 2021
2
3 #include <iostream>
4 #include <string> // because of string
5 using namespace std;
6
7 enum class PhDGrade
8 {
9 non_sufficit,

10 rite,
11 cum_laude,
12 magna_cum_laude,
13 summa_cum_laude
14 };
15
16 [[nodiscard]] string to_string(const PhDGrade& grade)
17 {
18 string name { };
19 switch (grade)
20 {
21 using enum PhDGrade;
22 case summa_cum_laude: name = "summa cum laude"s; break;
23 case magna_cum_laude: name = "magna cum laude"s; break;
24 case cum_laude : name = "cum laude"s; break;
25 case rite : name = "rite"s; break;
26 case non_sufficit : name = "non sufficit"s; break;
27 }
28 return name;
29 }
30
31 int main()
32 {
33 PhDGrade alexGrade { PhDGrade::rite },
34 jordansGrade { PhDGrade::summa_cum_laude };
35 cout << boolalpha
36 << "Is Alex' grade better than Jordan's grade? "
37 << (alexGrade > jordansGrade)
38 << endl;
39
40
41 alexGrade = PhDGrade::cum_laude;
42 jordansGrade = PhDGrade::non_sufficit;
43
44 cout << "alexGrade = "
45 << to_string(alexGrade)
46 << endl
47 << "jordansGrade = "
48 << to_string(jordansGrade)
49 << endl;
50 }

Listing 65: Grades.cpp

The declaration of an enumeration type starts with enum class followed by the
name of the enumeration type, here PhDGrade. Other possibilities are enum struct

– 127 –

or enum, which are not explained here. Between a pair of curly braces all
enumerators are listed, separated by commas. There is no comma after the last
enumerator. The declaration must be terminated by a semicolon after the closing
curly brace. Here the enumerators for the 5 grades were defined in reverse order.
The reason for this will be explained in a moment. It worth mentioning that the
identifiers in this example were chosen to be close to the application domain. Most
style guides suggest a different formatting for enumeration types and enumerators.

In the main() function the variables alexGrade and jordansGrade are defined as
PhDGrade and initialized with the enumerators PhDGrade::rite and
PhDGrade::summa_cum_laude. All enumerators of an enumeration type declared
with enum class must be preceded by the name of the enumeration type, followed
by the scope operator, ::. As line 37 shows, enumerators or variables of
enumeration types can be compared using comparison operators. Internally, each
enumerator of a specific type is assigned an integer value, starting with 0, which is
incremented by 1 for each subsequent enumerator. For this reason PhDGrade
enumerators have been defined in reverse order, starting with
PhDGrade::non_sufficit with implicit value 0 up to PhDGrade::summa_cum_laude
with implicit value 4.

After that, new values are assigned to the two variables. To get a meaningful
representation that can be sent to the output, for example, the to_string() function
is called. C++ has many overloaded functions to_string(), but none of them accepts
a parameter of type PhDGrade.

Therefore, an overloaded version of to_string() is defined which takes a PhDGrade
as parameter. The to_string(const PhDGrade&) function is implemented in an easy
to understand, but not necessarily elegant way. Since the only effect of calling this
function is to return a string representation for its parameter, it is prefixed with
the [[nodiscard]] attribute. First, the string variable name is defined and
initialized to an empty string. Then, a new control structure is used for the first
time, namely a switch statement. Unlike if and if else, switch can have multiple
branches. A switch statement begins with the keyword switch followed by an
expression surrounded by a pair of parentheses. Here the expression simply
consists of the local variable grade. All branches of a switch statement are enclosed
in curly braces. Each branch begins with the keyword case, followed by a literal of
the same type as the switch expression, and a colon. The colon is followed by a
statement, which must usually be terminated with break. If the value of the
expression is equal to the literal of a case, the corresponding branch statement is
executed. If a branch is not terminated it falls through, i.e. the next branch is
executed, regardless of its case literal. There can also be a default branch. It starts
with the keyword default followed by a colon. The cases of a switch statement do
not have to be in any particular order. However, it is recommended to arrange them
systematically. A default case is usually placed at the end of a switch statement.

– 128 –

Each case should be terminated with break. The fall-through option should
generally be avoided.

One more detail needs to be explained, namely the statement using enum
PhDGrade;, which precedes the first case of the switch statement. It allows the use
of the enumerators without the need to prepend the enumeration type and the
scope operator in the scope of the current block. Of course, it could have been the
first statement of function to_string(const PhDGrade&). But it is a good practice to
provide a short form for accessing names only in the smallest necessary scope.

Up-to-date versions of C++ compilers should compile the program with the option
-std=c++20 without problems.

Much more could be written about enumerations. For this text it is recommended to
use them only in the way they were introduced before.

5.2. Structured Datatypes
Rational numbers are used for the introduction of structured data types. Therefore,
some basic information about rational numbers is given below. Relevant
information can be found, for example, on the World Wide Web (“Rational Number,”
2021). The C++ standard library provides support for representing and processing
rational numbers at compile time. This section is about the use of rational numbers
at run time.

A rational number can be expressed as the quotient of two integers, namely the
numerator and the denominator. The value range of the numerator includes all
integer values including negative values and zero. As an additional requirement,
the value range of the denominator can be restricted to integer values greater than
zero.

A rational number is irreducible if the numerator and denominator have no
common divisor. This is also called the canonical form of the rational number. The
Euclidean algorithm can be used to calculate the greatest common divisor (abbr. gcd)
of two integers. Reducing a rational number by the gcd of its numerator and
denominator gives its canonical form. Furthermore, it can be required that rational
numbers can only be created in their canonical form.

To add or to subtract two rational numbers, they must have the same denominator.
If necessary, the denominators can be made equal by expanding the first rational
number with the denominator of the second rational number and the second
rational number with the denominator of the first rational number.

The formula for the addition is a
b
+ c
d
=a⋅d+b⋅c

b⋅d
.

– 129 –

The formula for the subtraction is a
b
− c
d
= a⋅d−b⋅c

b⋅d
.

Multiplication of rational numbers is done by multiplying the numerators and
multiplying the denominators. The formula is a

b
⋅c
d
= a⋅c
b⋅d

.

Division requires that b, c, and d are non-zero:

a
b
c
d

=a⋅d
b⋅c

.

Any of the above operations can yield a reducible rational number.

5.2.1. Rational Numbers With Fundamental Datatypes
First, a comprehensive implementation of the rational numbers and arithmetic
operations described above is presented and discussed using the programming
concepts presented so far. Listing 66 shows the corresponding program. It consists
of ten functions including main(). For this reason, so-called documentation
comments are used the first time. A documentation generator will process these
documentation comments and automatically generate a documentation. In this case
Doxygen is used as a documentation generator. The documentation comments are
therefore in a format suitable for Doxygen. Each comment describes the purpose of
the function, its parameters and its return value.

1 /*! \file RationalNumberSimple.cpp
2 *
3 * Implements arithmetic for rational numbers
4 * represented by integral variables.
5 *
6 * \author Ulrich Eisenecker
7 * \date December 4, 2023
8 */
9

10 #include <iostream>
11 #include <cstdint> // Because of intmax_t.
12 #include <cmath> // Because of abs().
13 #include <numeric> // Because of gcd().
14
15 using namespace std;
16
17 /*! Returns -1 if n < 0, 0 if n == 0, +1 if n > 0.
18 */
19 [[nodiscard]] intmax_t sign(const intmax_t& n);
20
21 /*! Normalizes rational number a,b,
22 * i.e., canonical form and b > 0.
23 */
24 void normalize(intmax_t& a,intmax_t& b);
25
26 /*! Inputs rational number a,b from cin.
27 */
28 void inputRationalNumber(intmax_t& a, intmax_t& b);
29
30 /*! Outputs rational number a,b to cout.

– 130 –

31 */
32 void outputRationalNumber(const intmax_t& a,
33 const intmax_t& b);
34
35 /*! Adds rational numbers a,b and c,d,
36 * and puts the result in e,f.
37 */
38 void add(const intmax_t& a,const intmax_t& b,
39 const intmax_t& c,const intmax_t& d,
40 intmax_t& e, intmax_t& f);
41
42 /*! Subtracts rational number c,d from a,b,
43 * and puts the result in e,f.
44 */
45 void subtract(const intmax_t& a,const intmax_t& b,
46 const intmax_t& c,const intmax_t& d,
47 intmax_t& e, intmax_t& f);
48
49 /*! Multiplies rational numbers a,b and c,d,
50 * and puts the result in e,f.
51 */
52 void multiply(const intmax_t& a,const intmax_t& b,
53 const intmax_t& c,const intmax_t& d,
54 intmax_t& e, intmax_t& f);
55
56 /*! Divides rational number a,b by c,d,
57 * and puts the result in e,f.
58 */
59 void divide(const intmax_t& a,const intmax_t& b,
60 const intmax_t& c,const intmax_t& d,
61 intmax_t& e, intmax_t& f);
62
63 /*! Executes each function at least once.
64 */
65 int main()
66 {
67 cout << "Helper functions ..." << endl;
68 intmax_t m { }, n { };
69 cout << "Enter m: ";
70 cin >> m;
71 cout << "Enter n: ";
72 cin >> n;
73 cout << "Sign of " << m << " = " << sign(m) << endl;
74 cout << "Sign of " << n << " = " << sign(n) << endl;
75 normalize(m,n);
76 cout << "Canonical form = ";
77 outputRationalNumber(m,n);
78
79 cout << "\n\nRational number arithmetics ..."
80 << endl;;
81 intmax_t a { }, b { }, c { }, d { }, e { }, f { };
82 cout << "Enter 1st rational number\n";
83 inputRationalNumber(a,b);
84 cout << "\nEnter 2nd rational number\n";
85 inputRationalNumber(c,d);
86 add(a,b,c,d,e,f);
87 cout << "sum = ";
88 outputRationalNumber(e,f);
89 cout << endl;
90 subtract(a,b,c,d,e,f);
91 cout << "difference = ";
92 outputRationalNumber(e,f);
93 cout << endl;
94 multiply(a,b,c,d,e,f);
95 cout << "product = ";
96 outputRationalNumber(e,f);
97 cout << endl;

– 131 –

98 divide(a,b,c,d,e,f);
99 cout << "quotient = ";

100 outputRationalNumber(e,f);
101 cout << endl;
102 }
103
104 intmax_t sign(const intmax_t& n)
105 {
106 if (n < 0)
107 {
108 return -1;
109 }
110 if (n > 0)
111 {
112 return +1;
113 }
114 return 0;
115 }
116
117 void normalize(intmax_t& a,intmax_t& b)
118 {
119 intmax_t divisor { gcd(a,b) };
120 a = sign(a) * sign(b) * abs(a) / divisor;
121 b = abs(b) / divisor;
122 }
123
124 void inputRationalNumber(intmax_t& a, intmax_t& b)
125 {
126 cout << "numerator: " << flush;
127 cin >> a;
128 do
129 {
130 cout << "denominator: " << flush;
131 cin >> b;
132 if (b == 0)
133 {
134 cerr << "Error, denominator may not be 0!"
135 << endl;
136 }
137 } while (b == 0);
138 }
139
140 void outputRationalNumber(const intmax_t& a,
141 const intmax_t& b)
142 {
143 cout << '('
144 << a
145 << '/'
146 << b
147 << ')'
148 << flush;
149 }
150
151 void add(const intmax_t& a,const intmax_t& b,
152 const intmax_t& c,const intmax_t& d,
153 intmax_t& e, intmax_t& f)
154 {
155 e = a * d + b * c;
156 f = b * d;
157 normalize(e,f);
158 }
159
160 void subtract(const intmax_t& a,const intmax_t& b,
161 const intmax_t& c,const intmax_t& d,
162 intmax_t& e, intmax_t& f)
163 {
164 e = a * d - b * c;

– 132 –

165 f = b * d;
166 normalize(e,f);
167 }
168
169 void multiply(const intmax_t& a,const intmax_t& b,
170 const intmax_t& c,const intmax_t& d,
171 intmax_t& e, intmax_t& f)
172 {
173 e = a * c;
174 f = b * d;
175 normalize(e,f);
176 }
177
178 void divide(const intmax_t& a,const intmax_t& b,
179 const intmax_t& c,const intmax_t& d,
180 intmax_t& e,intmax_t& f)
181 {
182 e = a * d;
183 f = b * c;
184 normalize(e,f);
185 }

Listing 66: RationalNumberSimple.cpp

Including the comments, the program comprises almost 200 lines of code. To
improve readability, prototypes and function definitions have been split. All
function definitions appear after the implementation of main().

In the following, the rationale of each function and its implementation is discussed.

To obtain the canonical form of a rational number, its numerator and its
denominator have to be divided by its gcd value. The <numeric> header file declares
the std::gcd() function for exactly this purpose.

Interestingly, the C++ standard library does not provide a function to calculate the
sign of a number. Therefore, the sign() function, which takes a parameter of type
intmax_t as a reference to const, and returns a value of the type intmax_t, is
implemented according to (“Sign Function,” 2021). One implementation detail
should be mentioned. The two if statements check whether n is negative or positive
and return the corresponding value. Thus, only one alternative remains, namely n
being zero, which does not need to be checked separately. Therefore, the last
statement is simply return 0;. The declaration of sign() is preceded by the
[[nodiscard]] attribute, since returning the value is the only effect the function
produces.

The normalize() function takes two reference parameters representing the
nominator and denominator of a rational number. It serves two purposes. First, it
divides the numerator and denominator by their gcd, reducing the rational number
to its canonical form. Second, it forces the denominator to be positive. That is, either
a negative sign of the denominator is shifted to the numerator or a negative sign of
both is reduced.

– 133 –

The inputRationalNumber() function reads values for the numerator and
denominator from cin and stores them into the corresponding parameters passed
as references. The reading of the denominator is repeated until a value other than 0
is input.

The outputRationalNumber() function sends the values of the two parameters
passed as reference to const, representing numerator and denominator, to cout.
Both components are enclosed in a pair or parentheses and separated by a slash.
This is, of course, not the same format used for input. This is an exceptional case
here, since otherwise it would be easy to make a semantically invalid input, i.e., a
denominator with a value of zero. Normally the format for input and output
should be identical.

The remaining four functions, add(), subtract(), multiply(), and divide(), have
some similarities. Each function takes six parameters. The first four parameters are
passed as references to const. They represent two rational numbers, each with
numerator and denominator, to which the corresponding operation is applied. The
last two parameters are passed by reference. They represent the resulting rational
number with its numerator and denominator. The above formulas are implemented
directly. Since each operation can result in a reducible rational number,
normalize() is called for the resulting numerator and denominator.

The function main() consists of two parts. In its first part, each auxiliary function is
called. In its second part, every function that deals with rational numbers is called.
Despite the fact that function main() calls every other function directly at least once,
this is not sufficient for testing. Separate and more comprehensive tests were
written and executed for each function, which are not shown here.

The actual design of the functions deserves some criticism.

The sign() function is not specific to rational numbers. Therefore it is appropriate
that it is named without explicit reference to rational numbers. That is different for
the inputRationalNumber() and outputRationalNumber() functions. Their names
obviously have a reference to rational numbers. Simply calling these functions
input() and output() is not appropriate. The functions normalize(), add(),
subtract(), multiply(), and divide() are specific to rational numbers, but do not
express this in their names. This is inconsistent and could be considered deficient,
especially since these functions do not accept very specific parameter types that
makes them good candidates for overloading.

The normalize() function can easily be called with parameters that do not belong to
a rational number. No action is taken if the function is called with invalid values,
e.g. if both parameters have the value zero. Also, the parameters may be passed in
the wrong order, especially if their names do not specify a particular order. This
argument also applies to the other functions add(), subtract(), multiply(), and

– 134 –

divide(). It is easy to confuse the order of the six parameters, there are no
mechanisms to protect against illegal values, and the interface of any function with
six parameters is terribly long and not easy to use.

Structures support the definition of new data types that solve at least some of these
problems. They will be discussed in the next section.

5.2.2. Documentation Generation
Last but not least, the use of a documentation generator and documentation
comments to automatically generate documentation is briefly explained.

To be able to follow the following description, Doxygen (https://www.doxygen.nl)
and GraphViz (https://www.graphviz.org) must be installed and their installation
paths must be included in the respective system variables. It must be emphasized
that downloading software from the Internet and installing it can be dangerous.
Appropriate measures should therefore be taken, e.g. the download source should
be credible, it should be checked that the download has not been tampered with,
and it should be checked that it is free of malware.

Doxygen can be used to document many types of entities of C++ programs. Listing 66
documents only two of them, the source file itself and the functions. Doxygen
supports a variety of formats for documentation documents. Here, the so-called Qt-
style is use. In this style, a documentation comment starts with /*! and ends with
*/. \file, \author, and \date are so-called documentation commands. As their name
suggest, they set the name of the file to be documented, its author, and a date.

Normally, a documentation comment comes immediately before the documented
entity. In the case of a file, there is no place before it. Therefore, the \file command
is used to specify the name of the processed file.

The remaining documentation comments are all placed immediately before the
documented entity, in this case a function. Each comment briefly informs about the
purpose of the function and its parameters.

A special configuration file contains all the information Doxygen needs to run. A
sample configuration file can be created by Doxygen itself, by typing doxygen -g on a
command line, or by running DoxyWizard, a graphical user interface for creating
configuration files and running Doxygen. In either case, a configuration file of more
than 2.000 lines is created. It contains a wealth of configuration options and related
information in comments.

Fortunately, the configuration file can essentially be reduced to a few options. The
configuration file shown in Listing 67 generates the documentation that will be
presented next.

– 135 –

https://www.graphviz.org/
https://www.doxygen.nl/

1 # RationalNumberSimple_Doxyfile for Doxygen 1.9.1
2 PROJECT_NAME = RationalNumberSimple
3 OUTPUT_DIRECTORY = RationalNumberSimple_doc
4 INPUT = RationalNumberSimple.cpp
5 GENERATE_LATEX = NO
6 HAVE_DOT = YES
7 CALL_GRAPH = YES
8 CALLER_GRAPH = YES
9 GRAPHICAL_HIERARCHY = YES

10 DIRECTORY_GRAPH = YES

Listing 67: RationalNumberSimple_Doxyfile

In the first line, the hash stands for a comment line which is not processed by
Doxygen. In line 2 the name of the project is defined. Normally a project consists of
several files. Here the project name corresponds to the name of the single file, but
without the extension .cpp. Line 3 specifies the directory to which the output will be
written. If the directory RationalNumberSimple_doc does not exist, Doxygen will
create it in the active directory. Before starting a new Doxygen run, it is
recommended to completely delete the contents of the directory containing the
generated documentation. This ensures that parts of the documentation, i.e. files
that are no longer generated, are deleted.

Line 4 specifies the directory that contains the files to be processed by Doxygen. If
no file name is specified, all source files in this directory are processed. If a file
name is specified, only that file will be processed. This is the reason why
RationalNumbersSimple.cpp is specified here. Here it is assumed that the file to be
processed exists in the active directory.

Line 5 suppresses the generation of additional documentation in LaTeX format,
which is enabled by default. The default for documentation in html format is YES, so
it has been omitted from the configuration file.

The HAVE_DOT option must be set to YES (line 6) for GraphViz dot command to be
used. The remaining options cause the generation of various useful diagrams for
which GraphViz is needed.

After running Doxygen RationalNumberSimple_Doxyfile in a terminal window,
Doxygen creates the directory RationalNumberSimple_doc in the specified location.
This directory contains more than 120 files in a subdirectory named html and
another nested subdirectory named search. The index.html file in the html
subdirectory is the entry point for the documentation. It can normally be loaded in
a web browser.

Figure 27 shows a screenshot of index.html in a browser window.

– 136 –

Figure 27: index.html generated by Doxygen

Selecting Files → File List the window shown in Figure 28. opens.

Figure 28: File List generated by Doxygen

Clicking on RationalNumbersSimple.cpp displays a relatively large document
containing a reference for this file. Figure 29 shows a section of the beginning of the
browser window.

– 137 –

Figure 29: File reference generated by Doxygen

The first section of the document provides information about the files included in
RationalNumberSimple.cpp. Additionally, this information is displayed as include-
dependency graph.

The second section displays the functions defined in RationalNumberSimple.cpp.
The third section contains the information added at the beginning of
RationalNumberSimple.cpp with the documentation commands \file, \author, and
\date.

Clicking on the entry for the main() function in the second section, the
documentation generated for it is displayed. The screenshot in Figure 30 shows the
short description of main() and a call graph. The call graph of main() shows which
other functions are called by main(), either directly or indirectly. Since main() calls
every other function directly, arrow lines connect main() to each other function.
Since there is no function that calls main(), there is no caller graph for it.

– 138 –

Figure 30: Call graph generated by Doxygen

Doxygen is relatively sensitive to errors and reports them only hesitantly. So if
something goes wrong, it is recommended to analyze the corresponding Doxyfile
thoroughly. In addition, documentation comments can also be a source of problems.
For example, depending on the options selected, it may go unnoticed if an entity has
not been commented.

5.2.3. User-defined Types for Related Data
In a rational number, the numerator and denominator are closely related. It is
possible to combine both using a so-called structure as user-defined data type. The
definition of a structure starts with the keyword struct followed by its name. The
members of a structure are enclosed between a pair of curly braces. The definition
of the structure must be terminated with a semicolon. Next, structures consisting
only of data members are examined in more detail.

The structure in Listing 68 defines the RationalNumber data type.
1 struct RationalNumber
2 {
3 intmax_t numerator,
4 denominator;

– 139 –

5 };

Listing 68: struct RationalNumber

It has two data members, namely numerator and denominator, both of type
intmax_t. Data members of a struct are defined in the same way as variables in a
block. Based on the previous definition, a variable of type RationalNumber can be
declared in the main() function, for example, as shown in Listing 69:

6 // …
7 int main()
8 {
9 RationalNumber n;

Listing 69: Declaration of a variable of RationalNumber type

Its members can be accessed with the member access operator which is the dot, for
example, n.numerator. After the declaration in Listing 69 both data members of n
are undefined. That is, they have no meaningful value. Sending both components to
cout, as shown in Listing 70, may result in different undefined values on each pass.

10 cout << n.numerator << endl;
11 cout << n.denominator << endl;

Listing 70: Sending RationalNumber data members to cout

To avoid this, it is possible to specify default values that will be used to initialize
each data member, when a variable of the struct is defined. This is shown in
Listing 71.

1 struct RationalNumber
2 {
3 intmax_t numerator { 0 },
4 denominator { 1 };
5 };

Listing 71: Default initialization of data members in a struct

5.2.3.1. Design Based on Reference Semantics
Now, the RationalNumberSimple.cpp (Listing 66) program is rewritten by using the
struct RationalNumber instead of single integer variables. The program in Listing 72
does this in a way that closely resembles its predecessor. For example, a reference to
RationalNumber is passed as an argument to the inputRationalNumber(Ra-
tionalNumber&) function. This function inputs r.numerator and r.denominator
directly. Each of the four arithmetic functions takes two RationalNumber parameters
as references to const, combines them according to the specific arithmetic
operation and places the result in the third RationalNumber parameter, which is
passed as a reference.

1 /*! \file RationalNumberStructureReferenceSemantics.cpp
2 *
3 * Implements arithmetic for rational numbers
4 * represented by a struct

– 140 –

5 * using reference semantics.
6 *
7 * \author Ulrich Eisenecker
8 * \date February 8, 2022
9 */

10
11 #include <iostream>
12 #include <cstdint> // Because of intmax_t.
13 #include <cmath> // Because of abs().
14 #include <numeric> // Because of gcd().
15
16 using namespace std;
17
18 /*! Returns -1 if n < 0, 0 if n == 0, +1 if n > 0.
19 */
20 [[nodiscard]] intmax_t sign(const intmax_t& n);
21
22 /*! Represents rational number as struct.
23 */
24 struct RationalNumber
25 {
26 /*! Holds numerator of rational number.
27 * By default, numerator is initialized to 0.
28 */
29 intmax_t numerator { 0 },
30 /*! Holds denominator of rational number.
31 * By default, denominator is initialized to 1.
32 */
33 denominator { 1 };
34 };
35
36 /*! Normalizes rational number r,
37 * i.e., canonical form and r.denominator > 0.
38 */
39 void normalize(RationalNumber& r);
40
41 /*! Inputs rational number r from cin.
42 */
43 void inputRationalNumber(RationalNumber& r);
44
45 /*! Outputs rational number r to cout.
46 */
47 void outputRationalNumber(const RationalNumber& r);
48
49 /*! Adds rational numbers a and b, and puts the result in r.
50 */
51 void add(const RationalNumber& a,const RationalNumber& b,
52 RationalNumber& r);
53
54 /*! Subtracts rational number b from a, and puts the result in r.
55 */
56 void subtract(const RationalNumber& a,const RationalNumber& b,
57 RationalNumber& r);
58
59 /*! Multiplies rational numbers a and b, and puts the result in r.
60 */
61 void multiply(const RationalNumber& a,const RationalNumber& b,
62 RationalNumber& r);
63
64 /*! Divides rational number a by b, and puts the result in r.
65 */
66 void divide(const RationalNumber& a,const RationalNumber& b,
67 RationalNumber& r);
68
69 /*! Executes each function at least once.
70 */
71 int main()

– 141 –

72 {
73 cout << "Helper functions ..." << endl;
74 intmax_t m { }, n { };
75 cout << "Enter m: ";
76 cin >> m;
77 cout << "Enter n: ";
78 cin >> n;
79 cout << "Sign of " << m << " = " << sign(m) << endl;
80 cout << "Sign of " << n << " = " << sign(n) << endl;
81 RationalNumber o { m, n };
82 normalize(o);
83 cout << "Canonical form = ";
84 outputRationalNumber(o);
85
86 cout << "\n\nRational number arithmetics ..."
87 << endl;;
88 RationalNumber a { }, b { }, c { };
89 cout << "Enter 1st rational number\n";
90 inputRationalNumber(a);
91 cout << "\nEnter 2nd rational number\n";
92 inputRationalNumber(b);
93 add(a,b,c);
94 cout << "sum = ";
95 outputRationalNumber(c);
96 cout << endl;
97 subtract(a,b,c);
98 cout << "difference = ";
99 outputRationalNumber(c);

100 cout << endl;
101 multiply(a,b,c);
102 cout << "product = ";
103 outputRationalNumber(c);
104 cout << endl;
105 divide(a,b,c);
106 cout << "quotient = ";
107 outputRationalNumber(c);
108 cout << endl;
109 }
110
111 intmax_t sign(const intmax_t& n)
112 {
113 if (n < 0)
114 {
115 return -1;
116 }
117 if (n > 0)
118 {
119 return +1;
120 }
121 return 0;
122 }
123
124 void normalize(RationalNumber& r)
125 {
126 intmax_t divisor { gcd(r.numerator,r.denominator) };
127 r.numerator = sign(r.numerator) * sign(r.denominator)
128 * abs(r.numerator) / divisor;
129 r.denominator = abs(r.denominator) / divisor;
130 }
131
132 void inputRationalNumber(RationalNumber& r)
133 {
134 cout << "numerator: " << flush;
135 cin >> r.numerator;
136 do
137 {
138 cout << "denominator: " << flush;

– 142 –

139 cin >> r.denominator;
140 if (r.denominator == 0)
141 {
142 cerr << "Error, denominator may not be 0!"
143 << endl;
144 }
145 } while (r.denominator == 0);
146 }
147
148 void outputRationalNumber(const RationalNumber& r)
149 {
150 cout << '('
151 << r.numerator
152 << '/'
153 << r.denominator
154 << ')'
155 << flush;
156 }
157
158 void add(const RationalNumber& a,const RationalNumber& b,
159 RationalNumber& r)
160 {
161 r.numerator = a.numerator * b.denominator + a.denominator * b.numerator;
162 r.denominator = a.denominator * b.denominator;
163 normalize(r);
164 }
165
166 void subtract(const RationalNumber& a,const RationalNumber& b,
167 RationalNumber& r)
168 {
169 r.numerator = a.numerator * b.denominator - a.denominator * b.numerator;
170 r.denominator = a.denominator * b.denominator;
171 normalize(r);
172 }
173
174 void multiply(const RationalNumber& a,const RationalNumber& b,
175 RationalNumber& r)
176 {
177 r.numerator = a.numerator * b.numerator;
178 r.denominator = a.denominator * b.denominator;
179 normalize(r);
180 }
181
182 void divide(const RationalNumber& a,const RationalNumber& b,
183 RationalNumber& r)
184 {
185 r.numerator = a.numerator * b.denominator;
186 r.denominator = a.denominator * b.numerator;
187 normalize(r);
188 }

Listing 72: RationalNumberStructureReferenceSemantics.cpp

A closer look at the normalize() function suggests an even more consistent
approach. normalize() takes a RationalNumber parameter by reference and
modifies it. Applying this approach to add(), for example, would mean that add()
takes only two parameters, the first being a RationalNumber passed by reference,
and the second being a RationalNumber passed as reference to const. Then add()
performs the addition and stores the result in the first argument. Listing 73 shows a
corresponding definition of add().

1 void add(RationalNumber& a,const RationalNumber& b)
2 {

– 143 –

3 a.numerator = a.numerator * b.denominator + a.denominator * b.numerator;
4 a.denominator = a.denominator * b.denominator;
5 normalize(a);
6 }

Listing 73: Alternative design of add() function

This style of programming uses the so-called reference semantics, which corresponds
to the imperative programming paradigm. A variable or set of variables is modified
until its state corresponds to the desired solution. This style also largely corresponds
to the object-oriented programming paradigm and is very popular in C++
programming.

Listing 74 shows a minimal configuration file for which Doxygen generates the
documentation mentioned below.

1 # RationalNumberStructureReferenceSemantics_Doxyfile for Doxygen 1.9.1
2 PROJECT_NAME = RationalNumberStructureReferenceSemantics
3 OUTPUT_DIRECTORY = RationalNumberStructureReferenceSemantics_doc
4 INPUT = RationalNumberStructureReferenceSemantics.cpp
5 GENERATE_LATEX = NO
6 HAVE_DOT = YES
7 CALL_GRAPH = YES
8 CALLER_GRAPH = YES
9 GRAPHICAL_HIERARCHY = YES

10 DIRECTORY_GRAPH = YES

Listing 74: RationalNumberStructureReferenceSemantics_Doxyfile

The program shown in Listing 72 does not change the functions in terms of their
tasks or their calling relationships. Generating the documentation results in exactly
the same call graph for main(). However, the documentation generated for it
contains new parts related to classes. Figures 31 and 32 show screenshots of the
new menu item for classes and the section documenting RationalNumber.

Figure 31: Menu entry for classes

– 144 –

Figure 32: Documentation generated by Doxygen for struct RationalNumber

5.2.3.2. Design Based on Value Semantics
Next, another approach is presented, which follows the so-called value semantics.
Value semantics is a feature of the functional programming paradigm. Roughly
speaking, it means that once an object, i.e. a variable, is created, it will not be
changed. Consequently, the input of a RationalNumber must not change an existing
variable. Instead, a new exemplar of RationalNumber is returned, which can be
used to initialize a new variable or a const variable, for example. Adding two
RationalNumbers gives a new RationalNumber as a result, and so on. Whenever a
function returns a value, that value must be used because that is the only effect of
calling that function. Therefore, all functions that return a value are prefixed with
the [[nodiscard]] attribute.

The functions of the program shown in Listing 75 adhere to the value semantics
with a few exceptions.

– 145 –

1 /*! \file RationalNumberStructureValueSemantics.cpp
2 *
3 * Implements arithmetic for rational numbers
4 * represented by a struct
5 * using value semantics.
6 *
7 * \author Ulrich Eisenecker
8 * \date February 8, 2022
9 */

10
11 #include <iostream>
12 #include <cstdint> // Because of intmax_t.
13 #include <cmath> // Because of abs().
14 #include <numeric> // Because of gcd().
15
16 using namespace std;
17
18 /*! Returns -1 if n < 0, 0 if n == 0, +1 if n > 0.
19 */
20 [[nodiscard]] intmax_t sign(const intmax_t& n);
21
22 /*! Represents rational number as struct.
23 */
24 struct RationalNumber
25 {
26 /*! Holds numerator of rational number.
27 * By default, numerator is initialized to 0.
28 */
29 intmax_t numerator { 0 },
30 /*! Holds denominator of rational number.
31 * By default, denominator is initialized to 1.
32 */
33 denominator { 1 };
34 };
35
36 /*! Returns normalized rational number r,
37 * i.e., canonical form and r.denominator > 1.
38 */
39 [[nodiscard]] RationalNumber normalize(const RationalNumber& r);
40
41 /*! Inputs rational number r from cin
42 * and returns it as value.
43 */
44 [[nodiscard]] RationalNumber inputRationalNumber();
45
46 /*! Outputs rational number r to cout.
47 */
48 void outputRationalNumber(const RationalNumber& r);
49
50 /*! Adds rational numbers a and b, and returns the result as value.
51 */
52 [[nodiscard]] RationalNumber add(const RationalNumber& a,
53 const RationalNumber& b);
54
55 /*! Subtracts rational number b from a, and returns the result as value.
56 */
57 [[nodiscard]] RationalNumber subtract(const RationalNumber& a,
58 const RationalNumber& b);
59
60 /*! Multiplies rational numbers a and b, and returns the result as value.
61 */
62 [[nodiscard]] RationalNumber multiply(const RationalNumber& a,
63 const RationalNumber& b);
64
65 /*! Divides rational number a by b, and returns the result as value.
66 */
67 [[nodiscard]] RationalNumber divide(const RationalNumber& a,

– 146 –

68 const RationalNumber& b);
69
70 /*! Executes each function at least once.
71 */
72 int main()
73 {
74 cout << "Helper functions ..." << endl;
75 intmax_t m { }, n { };
76 cout << "Enter m: ";
77 cin >> m;
78 cout << "Enter n: ";
79 cin >> n;
80 cout << "Sign of " << m << " = " << sign(m) << endl;
81 cout << "Sign of " << n << " = " << sign(n) << endl;
82 RationalNumber o { m, n };
83 o = normalize(o);
84 cout << "Canonical form = ";
85 outputRationalNumber(o);
86
87 cout << "\n\nRational number arithmetics ..."
88 << endl;;
89 cout << "Enter 1st rational number\n";
90 RationalNumber a { inputRationalNumber() };
91 cout << "Enter 2nd rational number\n";
92 RationalNumber b { inputRationalNumber() };
93 cout << "sum = ";
94 outputRationalNumber(add(a,b));
95 cout << "\ndifference = ";
96 outputRationalNumber(subtract(a,b));
97 cout << "\nproduct = ";
98 outputRationalNumber(multiply(a,b));
99 cout << "\nquotient = ";

100 outputRationalNumber(divide(a,b));
101 cout << endl;
102 }
103
104 intmax_t sign(const intmax_t& n)
105 {
106 if (n < 0)
107 {
108 return -1;
109 }
110 if (n > 0)
111 {
112 return +1;
113 }
114 return 0;
115 }
116
117 RationalNumber normalize(const RationalNumber& r)
118 {
119 intmax_t divisor { gcd(r.numerator,r.denominator) };
120 RationalNumber result { };
121 result.numerator = sign(r.numerator) * sign(r.denominator)
122 * abs(r.numerator) / divisor;
123 result.denominator = abs(r.denominator) / divisor;
124 return result;
125 }
126
127 RationalNumber inputRationalNumber()
128 {
129 RationalNumber result;
130 cout << "numerator: " << flush;
131 cin >> result.numerator;
132 do
133 {
134 cout << "denominator: " << flush;

– 147 –

135 cin >> result.denominator;
136 if (result.denominator == 0)
137 {
138 cerr << "Error, denominator may not be 0!"
139 << endl;
140 }
141 } while (result.denominator == 0);
142 return normalize(result);
143 }
144
145 void outputRationalNumber(const RationalNumber& r)
146 {
147 cout << '('
148 << r.numerator
149 << '/'
150 << r.denominator
151 << ')'
152 << flush;
153 }
154
155 RationalNumber add(const RationalNumber& a,const RationalNumber& b)
156 {
157 RationalNumber result;
158 result.numerator = a.numerator * b.denominator + a.denominator * b.numerator;
159 result.denominator = a.denominator * b.denominator;
160 return normalize(result);
161 }
162
163 RationalNumber subtract(const RationalNumber& a,const RationalNumber& b)
164 {
165 RationalNumber result;
166 result.numerator = a.numerator * b.denominator - a.denominator * b.numerator;
167 result.denominator = a.denominator * b.denominator;
168 return normalize(result);
169 }
170
171 RationalNumber multiply(const RationalNumber& a,const RationalNumber& b)
172 {
173 RationalNumber result;
174 result.numerator = a.numerator * b.numerator;
175 result.denominator = a.denominator * b.denominator;
176 return normalize(result);
177 }
178
179 RationalNumber divide(const RationalNumber& a,const RationalNumber& b)
180 {
181 RationalNumber result;
182 result.numerator = a.numerator * b.denominator;
183 result.denominator = a.denominator * b.numerator;
184 return normalize(result);
185 }

Listing 75: RationalNumberStructureValueSemantics.cpp

In the following, an overview of the changes is given. In addition, deviations from
the strict value semantics are discussed and in some cases it is shown how these
deviations can be overcome.

The main() function deviates in some places from the pure value semantics. First,
the variables m and n are defined and initialized uniformly. Then their values are
read from the standard input. That is, m and n are first declared and then assigned.
Obviously, they are modified after their declaration, which is not in accordance with

– 148 –

the value semantics. This problem can be solved by providing a special function to
input and returning an integer value. Listing 76 shows the prototype of a
corresponding function.

1 intmax_t inputInt(const string& prompt);

Listing 76: inputInt() function

Of course, the function must define a local integer variable in its implementation
and use it to read the input from cin. This cannot be circumvented in C++.

Now, m and n can be declared as const and initialized with the result of calling this
function, as Listing 77 shows.

1 const intmax_t m { inputInt("Enter m: ") }, n { inputInt("Enter n: ") };

Listing 77: Declaration and initialization of variables by function call

Second, in the statement o = normalize(o); the result is assigned to the variable o
that was initialized in the immediately preceding statement. Again, both steps can
be combined into one by using a uniform initialization, as shown in Listing 78.

1 const RationalNumber o { normalize({ m,n }) };

Listing 78: Combining normalization and initialization

Since normalize() expects a RationalNumber passed as a reference to const, it can
be called with a corresponding initializer list, here { m,n }. The corresponding
temporary RationalNumber object is created spontaneously. The result of
normalize() is used to initialize o. It should be noted that o is declared as const
RationalNumber here.

The normalize() function takes a reference to const to RationalNumber as a
parameter and returns a RationalNumber as value. In this way, its use conforms to
value semantics, since normalize() does not change the parameter passed to it. The
implementation of normalize()s is different. Here, a local variable called result of
type RationalNumber is defined. New values are then assigned to the members of
result, and result is returned as a value.

Uniform initialization makes it possible to rewrite the implementation of
normalize() so that it also conforms to the value semantics. The function prototype
tells the compiler what type the function returns. So the compiler uses the initializer
list to construct an object of that type! Of course, divisor can also be declared
const. Listing 79 shows the function normalize() in an appropriately rewritten
form.

1 RationalNumber normalize(const RationalNumber& r)
2 {
3 const intmax_t divisor { gcd(r.numerator,r.denominator) };
4
5 return { sign(r.numerator) * sign(r.denominator) * abs(r.numerator) / divisor,
6 abs(r.denominator) / divisor };
7 }

– 149 –

Listing 79: normalize() function rewritten

The inputRationalNumber() function must be used according to the value
semantics. It no longer takes a parameter, but simply returns a RationalNumber as a
value. Since it has no parameter, it can no longer be overloaded for another type
because the type of a return value does not participate in the overload resolution.
Its implementation also violates value semantics. It defines a local variable called
result of type RationalNumber. Its members are subsequently used to input new
values. This problem can be circumvented by using separate integral variables.
However, in the case of the denominator, repeated changes may occur if the user
specifies 0 as input. Nevertheless, return normalize(result); fully adheres to
value semantics. It passes result to normalize(), which returns a new
RationalNumber, which is subsequently returned as the function result. Fortunately,
the compiler applies appropriate optimizations to make this procedure efficient.
Incidentally, the call to normalize() with the rational number just read by the call
to inputRationalNumber() is a change from the previous version in Listing 72. It
may have been introduced there as well. However, in an effort to keep the changes
from the RationalNumberSimple.cpp program (Listing 66) to a necessary minimum,
this has been avoided.

In fact, inputRationalNumber() can be rewritten so that its implementation fully
conforms to the value semantics, as shown in Listing 80. The necessary components
are a uniform initialization, the inputInt() function presented above, and a
modified do loop.

1 RationalNumber inputRationalNumber()
2 {
3 const intmax_t numerator { inputInt("numerator: ") };
4 do
5 {
6 const intmax_t denominator { inputInt("denominator: ") };
7 if (denominator != 0)
8 {
9 return normalize({ numerator, denominator });

10 }
11 } while (true);
12 }

Listing 80: InputRationalNumber() function rewritten

The do loop continues forever if no value is entered for the denominator other than
0. As soon as a valid denominator is entered, the return statement exits the
function. Since the compiler knows that normalize() expects a RationalNumber, it
constructs one on the fly using the supplied initializer list. It must be mentioned that
denominator is declared as const. This is possible because it is valid only within the
block of the do loop. It is destroyed each time the condition is checked and re-
declared and re-initialized when the block of the do loop is executed again.

Each function implementing an arithmetic operation takes two reference-to-const
parameters of type RationalNumber and returns the result as value of type

– 150 –

RationalNumber. Their implementations do not fully conform to value semantics
because each function defines a local variable result whose members are changed
before being returned. The add()function in Listing 81 shows how to change this.

1 RationalNumber add(const RationalNumber& a,const RationalNumber& b)
2 {
3 return normalize({ a.numerator * b.denominator +
4 a.denominator * b.numerator,
5 a.denominator * b.denominator });
6 }

Listing 81: add() function rewritten

5.3. Abstract Data Types
The programs shown in listings 72 and 75 have some similarities in terms of their
functions:

• Except for main(), both programs have a function that has nothing to do with
RationalNumber, namely sign(). It is an auxiliary function used in functions
related to RationalNumber.

• They have three functions that take exactly one parameter of type
RationalNumber or return a value of type RationalNumber, namely
normalize(), inputRationalNumber() and outputRationalNumber().

• The four functions add(), subtract(), multiply() and divide() perform
arithmetic operations on two RationalNumbers and return a new
RationalNumber as the result of the calculation.

An abstract data type (abbr. ADT) allows the definition of a new type for related data
and functions that work with them. This is called encapsulation. In addition, an ADT
hides the details about the data and the implementations of the functions that work
with them. This is referred to as information hiding. The only information an ADT
reveals to clients is the interfaces of its functions.

5.3.1. Classes
In C++, the struct and class keywords provide support for ADTs. The difference
between struct and class is that in a struct everything is public by default, while
in a class everything is private by default. In the following, only class will be used
because it is closer to the concept of an ADT in terms information hiding.

Both an ADT and a class serve as blueprints to construct so-called exemplars,
instances, or objects. The latter three terms are all synonyms. All objects share a
common life cycle. Each object is created, used, and eventually destroyed. A
class can have any number of constructors that are responsible for creating
and initializing an object. The rules for function overloading apply, i.e.

– 151 –

constructors must differ in the number and/or types of their parameters. A class
has exactly one destructor, which is responsible for the destruction of an
object and the necessary cleanup. All other functions of a class fall in the use of
an object in its life cycle. All of these functions are called either member functions in
C++ terminology or methods in the more general terminology of object-oriented
programming. Listing 82 shows a rough schema for defining a class.

1 class SomeClass
2 {
3 public:
4 SomeClass(); // 0, 1, or more explicitly defined constructors
5 ˜SomeClass(); // 0 or 1 explicitly defined destructor
6 publicMethods(); // any number
7 private:
8 privateMethods(); // any number
9 privateData; // any number

10 };

Listing 82: Schema for defining a class

The definition of a class begins with the keyword class, followed by the name of the
class, which in Listing 82 is SomeClass. The definition is enclosed in a pair of curly
braces. It is terminated by a semicolon, i.e. class SomeClass { /* ... */ };.

The keyword public followed by a colon means that all members defined after it
are accessible from outside the class.

A constructor has the same name as the class. In C++ there are various kinds of
constructors. One of them is the so-called standard constructor, which has no
argument. In some cases, if a standard constructor is not explicitly defined, the
compiler generates a default implementation for it. For this reason, the
comment in line 4 in Listing 82 says 0, 1, or more explicitly defined constructors. A
constructor is responsible for creating a fully initialized object, that is, after an
object has been constructed, it must not require any further initialization. More
information on constructors will be provided as needed.

A destructor starts with a tilde and has the same name as the class. A class has
exactly one destructor, which is either user-defined or automatically generated by
the compiler. For this reason, the comment on line 5 in Listing 82 says 0 or 1
explicitly defined destructor. A destructor has no parameters. Normally, a
destructor is never called directly.

The keyword private followed by a colon restricts access to all subsequent members
only within the class. Data members and auxiliary member functions that are used
only within the class are normally declared private.

In a class, everything is – by default – private. Therefore, public is required to
declare publicly accessible members. Besides public and private there is a third
access specifier, protected. It is not explained in detail in this text.

– 152 –

A class can have multiple sections that are public, protected, or private. It is
common for there to be only one of each section, in the exact order of public,
protected, and private.

5.3.2. Simple Class Buddy
The program in Listing 83 demonstrates most of the concepts mentioned earlier.
The Buddy class is very simple. It has a data member which contains the name of an
object. There are methods to get and set the name, as well as a constructor and a
destructor. Each method sends a message to standard output indicating which
method was called.

1 // Buddy.cpp by Ulrich Eisenecker, May 12, 2021
2
3 #include <iostream>
4 #include <string> // Because of string.
5 using namespace std;
6
7 class Buddy
8 {
9 public:

10 Buddy(const string& n):m_name { n }
11 {
12 cout << "Buddy::Buddy(const string&)" << endl;
13 }
14 ~Buddy()
15 {
16 cout << "Buddy::˜Buddy()" << endl;
17 }
18 [[nodiscard]] const string& name() const
19 {
20 cout << "const string& Buddy::name() const" << endl;
21 return m_name;
22 }
23 void name(const string& n)
24 {
25 cout << "void Buddy::name(const string&)" << endl;
26 m_name = n;
27 }
28 private:
29 string m_name { };
30 };
31
32 int main()
33 {
34 Buddy b { "Blake" };
35 cout << b.name() << endl;
36 b.name("Taylor");
37 cout << b.name() << endl;
38 }

Listing 83: Buddy.cpp

As mentioned earlier, the member access operator . is used to access a member of
an exemplar of a class, especially from outside the class, for example b.name() in
the main() function. Within a class, a member of the same class is usually accessed
directly. That is, the currently active object is not specified, for example return

– 153 –

m_name; in Buddy::name(). To refer to a class member independently of an object,
the scope operator is used, for example, Buddy::name() refers to the member
function name() of class Buddy. The class name cannot be omitted, since other
classes may also have a member function name() and, in addition, a free function
name() may exist.

The only data member of the Buddy class is m_name of type std::string. It is defined
at the end of the class in the private section. There it is explicitly initialized with an
empty initializer list. This causes a default initialization with an empty string. Its
name starts with the prefix m_. This is a convention for starting the name of a data
member. In principle, it could also be named name. However, in this case this would
conflict with the overloaded member functions Buddy::name(). Defining a
(member) function always also defines a pointer to that function with the same
name. Thus, name without the pair of parentheses is a pointer to the (member)
function Buddy::name(), causing a conflict with another member of the same name.
The present case is even more complicated, since there are overloaded versions of
Buddy::name().

Now for the public section, which contains only methods. The first member
function is the constructor. Its parameter list specifies an argument of type const
string&, namely n. Next to the parameter list, after the colon, there is a member
initializer list. This is the proper place to initialize each data member of the class.
Here, the uniform initializer syntax is used to initialize m_name with the value of n.
This initialization takes precedence over the direct initialization of m_name at the
place of its declaration. This is just redundant program code, since the compiler
does not perform duplicate initialization. Initialization in the member initializer list
takes precedence over initialization at the point of member declaration. If more
than one member is to be initialized, each must be separated from its predecessor
by a comma. The body of the constructor sends a message to cout informing about
its execution.

Because of the user-defined constructor the compiler no longer generates a
standard constructor. Adding the statement Buddy anotherBuddy; to main() would
result in a corresponding error message from the compiler. Nevertheless, the
compiler will automatically generate a copy constructor if needed. This can be
checked, for example, by providing a function printName() with a parameter of
type Buddy passed by value, as shown in Listing 84.

1 void printName(Buddy b)
2 {
3 cout << b.name() << endl;
4 }

Listing 84: Passing a Buddy exemplar by value

Calling printName() in main(), for example, printName(b);, sends b's name to
standard output. Since b is passed by value, a copy is created by calling the copy

– 154 –

constructor of Buddy. This automatically generated copy constructor has no side
effect, such as sending a message to cout. But the temporary object is destroyed
when it is no longer needed. This is the reason why the call to the destructor of
Buddy is displayed twice in the terminal window. In addition, printName() can also
be called with a std::string literal, for example, printName("Kyle"s). This time,
the compiler calls the user-defined constructor and creates a temporary exemplar
of Buddy. This is possible, because b is passed by value.

There are two more public member functions, which are so-called getter and setter
methods for the m_name attribute. The first overload of name(), a getter method, has
no parameter and returns m_value as a reference to const. Thus, the caller of
name() has access to m_value, but cannot change it. It would be also possible to
return a copy of m_name, but this would consume time and memory to create. Since
the only effect of calling this member function is to return the name of a Buddy
exemplar, it is prefixed with the [[nodiscard]] attribute.

An important detail is that this member function is declared as const. The trailing
const indicates that the call to this member function must not change the state of
the receiver object. For this reason, this member function can be called even for
objects declared as const or passed to another function as reference to const. In
addition, it is forbidden to do anything in this member function that can change the
state of the receiver object, such as calling a non-const member function.

If Buddy::name() were converted to a free function, the receiver object would have
to be passed by value or as reference to const, i.e. string name(const Buddy& b),
to achieve the same effect. It is helpful to imagine that the call to a member
function always has an implicit first parameter, namely the receiver object.
When a member function is declared const, it treats the object as if it had been
declared as const for the call to that function. Any member function that is not
allowed to change the state of an object should be declared as const. const also
participates in the overload resolution of member functions. Two member functions
can differ only in that one of them is declared const.

The second overload of name() returns nothing. It is passed a std::string as a
reference to const named n. This is a setter method that assigns the parameter n to
m_name. Passing the parameter n by value would also be a viable option. Whether it
makes more sense to pass the parameter as a reference to const or by value
requires a deeper analysis that cannot be done here. Since this method changes the
state of the object for which it is called, it cannot be declared as const.

5.3.3. Class Design Based on Reference Semantics
The procedural programming paradigm assumes that a program changes the state
of its variables until the desired solution is obtained. Reference semantics supports

– 155 –

this by allowing an object to change after it has been created and initialized. That is,
with reference semantics an object can normally change its state.

This first design of class RationalNumber is based on reference semantics.

The sign() function is not directly related to RationalNumber. Therefore it remains
a free function. All other functions that are obviously related to RationalNumber are
made member functions of the RationalNumber class.

There a five groups of member functions:

1. Constructor(s): Create and initialize an exemplar of RationalNumber with
default values 0 for numerator and 1 for denominator, a value for numerator
and 1 for denominator, or values for both, numerator and denominator

2. Member functions for input and output: They read numerator and
denominator of an exemplar of RationalNumber from standard input or write
them to standard output.

3. Getters and setters for numerator and denominator: They return the
corresponding member variables or assign new values to them.

4. Member functions that perform arithmetic operations: They allow addition,
subtraction, multiplication and division of RationalNumbers. Due to reference
semantics, the result of each arithmetic operation is stored in the receiver
object. That is, calling an arithmetic member function changes the receiver
object.

5. Auxiliary member function(s): Currently, the only member of this group is
RationalNumber::normalize(). It is called whenever a RationalNumber is
changed to its canonical form. Any member function that creates or modifies
a RationalNumber must leave the object in canonical form.

The destructor generated by the compiler is sufficient. Therefore, there will be no
user-defined destructor.

All member functions that do not return a specific value are declared to return the
active object as a reference to RationalNumber. This allows further use of the
returned object as will be shown later.

The complete program is shown in Listing 85. Each relevant part is documented
with comments for Doxygen.

1 /*! \file RationalNumberClassReferenceSemantics.cpp
2 *
3 * Implements arithmetic for rational numbers
4 * represented by a class
5 * using reference semantics.
6 *
7 * \author Ulrich Eisenecker
8 * \date December 14, 2023
9 */

10
11 #include <iostream>

– 156 –

12 #include <cstdint> // Because of intmax_t.
13 #include <cmath> // Because of abs().
14 #include <numeric> // Because of gcd().
15
16 using namespace std;
17
18 /*! Returns -1 if n < 0, 0 if n == 0, +1 if n > 0.
19 */
20 [[nodiscard]] intmax_t sign(const intmax_t& n);
21
22 /*! Represents rational number as class.
23 */
24 class RationalNumber
25 {
26 public:
27 /*! Constructs a normalized RationalNumber exemplar
28 * with n for m_numerator and d for d_denominator;
29 * default value for n is 0,
30 * default value for d is 1.
31 */
32 RationalNumber(const intmax_t& n = 0, const intmax_t& d = 1):
33 m_numerator { n }, m_denominator { d }
34 {
35 normalize();
36 }
37 /*! Returns m_numerator as reference to const.
38 */
39 [[nodiscard]] const intmax_t& numerator() const
40 {
41 return m_numerator;
42 }
43 /*! Returns m_denominator as reference to const.
44 */
45 [[nodiscard]] const intmax_t& denominator() const
46 {
47 return m_denominator;
48 }
49 /*! Sets m_numerator to n,
50 * normalizes rational number,
51 * and returns *this as reference.
52 */
53 RationalNumber& numerator(const intmax_t& n)
54 {
55 m_numerator = n;
56 normalize();
57 return *this;
58 }
59 /*! Sets m_denominator to d,
60 * normalizes rational number,
61 * and returns *this as reference.
62 */
63 RationalNumber& denominator(const intmax_t& d)
64 {
65 m_denominator = d;
66 normalize();
67 return *this;
68 }
69 /*! Adds rational numbers *this and r,
70 * stores result in *this,
71 * and return *this as reference.
72 */
73 RationalNumber& add(const RationalNumber& r);
74 /*! Subtracts rational number r from *this,
75 * stores result in *this,
76 * and return *this as reference.
77 */
78 RationalNumber& subtract(const RationalNumber& r);

– 157 –

79 /*! Multiplies rational numbers *this and r,
80 * stores result in *this,
81 * and return *this as reference.
82 */
83 RationalNumber& multiply(const RationalNumber& r);
84 /*! Divides rational numbers *this by r,
85 * stores result in *this,
86 * and return *this as reference.
87 */
88 RationalNumber& divide(const RationalNumber& r);
89 /*! Inputs rational number from cin
90 * and returns *this as reference.
91 */
92 RationalNumber& input();
93 /*! Outputs rational number to cout
94 * and returns *this as reference.
95 */
96 RationalNumber& output();
97 private:
98 /*! Normalizes rational number,
99 * i.e., canonical form and m_denominator > 0.

100 */
101 void normalize();
102 /*! Holds numerator of rational number.
103 * By default, numerator is initialized to 0.
104 */
105 intmax_t m_numerator { 0 },
106 /*! Holds denominator of rational number.
107 * By default, denominator is initialized to 1.
108 */
109 m_denominator { 1 };
110 };
111
112 /*! Executes each free function and
113 * each member function of RationalNumber
114 * at least once.
115 */
116 int main()
117 {
118 cout << "Helper functions ..." << endl;
119 intmax_t m { }, n { };
120 cout << "Enter m: ";
121 cin >> m;
122 cout << "Enter n: ";
123 cin >> n;
124 cout << "Sign of " << m << " = " << sign(m) << endl;
125 cout << "Sign of " << n << " = " << sign(n) << endl;
126
127 cout << "\n\nRational number arithmetics ..."
128 << endl;
129 RationalNumber a { }, b { }, c { };
130 cout << "Enter 1st rational number\n";
131 a.input();
132 cout << "\nEnter 2nd rational number\n";
133 b.input();
134 c = a; // Assign a to b to save its state,
135 a.add(b);
136 cout << "sum = ";
137 a.output();
138 cout << endl;
139 a = c; // Restore saved state of a.
140 a.subtract(b);
141 cout << "difference = ";
142 a.output();
143 cout << endl;
144 a = c; // Restore saved state of a.
145 a.multiply(b);

– 158 –

146 cout << "product = ";
147 a.output();
148 cout << endl;
149 a.numerator(c.numerator()); // Restore saved numerator of a.
150 a.denominator(c.denominator()); // Restore saved denominator of a.
151 a.divide(b);
152 cout << "quotient = ";
153 a.output();
154 cout << endl;
155 }
156
157 intmax_t sign(const intmax_t& n)
158 {
159 if (n < 0)
160 {
161 return -1;
162 }
163 if (n > 0)
164 {
165 return +1;
166 }
167 return 0;
168 }
169
170 RationalNumber& RationalNumber::add(const RationalNumber& r)
171 {
172 m_numerator = m_numerator * r.denominator()
173 + m_denominator * r.numerator();
174 m_denominator = m_denominator * r.denominator();
175 normalize();
176 return *this;
177 }
178
179 RationalNumber& RationalNumber::subtract(const RationalNumber& r)
180 {
181 m_numerator = m_numerator * r.denominator()
182 - m_denominator * r.numerator();
183 m_denominator = m_denominator * r.denominator();
184 normalize();
185 return *this;
186 }
187
188 RationalNumber& RationalNumber::multiply(const RationalNumber& r)
189 {
190 m_numerator = m_numerator * r.numerator();
191 m_denominator = m_denominator * r.denominator();
192 normalize();
193 return *this;
194 }
195
196 RationalNumber& RationalNumber::divide(const RationalNumber& r)
197 {
198 m_numerator = m_numerator * r.denominator();
199 m_denominator = m_denominator * r.numerator();
200 normalize();
201 return *this;
202 }
203
204 RationalNumber& RationalNumber::input()
205 {
206 cout << "numerator: " << flush;
207 cin >> m_numerator;
208 do
209 {
210 cout << "denominator: " << flush;
211 cin >> m_denominator;
212 if (m_denominator == 0)

– 159 –

213 {
214 cerr << "Error, denominator may not be 0!"
215 << endl;
216 }
217 } while (m_denominator == 0);
218 normalize();
219 return *this;
220 }
221
222 RationalNumber& RationalNumber::output()
223 {
224 cout << '('
225 << m_numerator
226 << '/'
227 << m_denominator
228 << ')'
229 << flush;
230 return *this;
231 }
232
233 void RationalNumber::normalize()
234 {
235 intmax_t divisor { gcd(m_numerator,m_denominator) };
236 m_numerator = sign(m_numerator) * sign(m_denominator)
237 * abs(m_numerator) / divisor;
238 m_denominator = abs(m_denominator) / divisor;
239 }

Listing 85: RationalNumberClassReferenceSemantics.cpp

Since the sign() function is the same as in Listing 72, it is not explained again.

The RationalNumber class has a public and a private section. First, the private
section is briefly described. RationalNumber::m_numerator and
RationalNumber::m_denominator are data members of RationalNumber, both of
type intmax_t. They are initialized in-class with 0 and 1. Initialization via the
initializer list of a constructor would take precedence over this initialization. This is
indeed the case, as explained below.

The helper function RationalNumber::normalize() is now a private member
function. As mentioned above, an object of type RationalNumber must be in
canonical form after its creation or the execution of a possibly modifying member
function. For this reason, RationalNumber::normalize() must be called by each of
these member functions. As a consequence, a client no longer needs to call this
function directly. Therefore, it has been moved into the private section.

Now to the public section.

RationalNumber has only one constructor. It fulfills all the above requirements. How
is this possible?

The constructor has two parameters, namely const intmax_t& n = 0 and const
intmax_t& d = 1.

Each parameter has a default value which is 0 for n (the numerator), and 1 for d (the
denominator). The rational number 0/1 is equal to 0. When calling the constructor,

– 160 –

parameters can be omitted from right to left. If the constructor is called with two
parameters, the caller passes both components of a rational number. If the
constructor is called with only one argument, it becomes a type conversion
constructor. The type conversion constructor can be called automatically if a
RationalNumber is expected and it is passed by value or as a reference to const. For
example, the integer 5 is converted to a RationalNumber with 5 as
RationalNumber::m_numerator and 1 as RationalNumber::m_denominator. If the
constructor is called without parameter, it is used as the standard constructor. This
results in a RationalNumber with 0 as RationalNumber::m_numerator and 1 as
RationalNumber::m_denominator.

A few words about constructors must be added. Until C++11, a constructor whose
only argument is of a different type than the class for which it is defined and which
can be called implicitly was called a converting constructor. Since then, due to the
availability of initializer lists, all constructors that can be called automatically are
called converting constructors (Converting Constructor - Cppreference.Com, n.d.).

Now to the getter methods const intmax_t& RationalNumber::numerator() const
and const intmax_t& RationalNumber::denominator() const. Both return the
corresponding data members as reference to const. Their call must not change the
state of the receiver object. For this reason, the getter methods are declared as
const. Apart from returning a result, they have no other effect. Therefore, they have
been prepended with the [[nodiscard]] attribute.

RationalNumber& RationalNumber::numerator(const intmax_t& n) and
RationalNumber& RationalNumber::denominator(const intmax_t& d) are setter
methods. They modify the receiver object. Therefore, they are not declared as const.
Both return a reference to the receiver object. This way it is possible to use their
result in an expression.

After the new value is assigned to the corresponding data member,
RationalNumber::normalize() is called to ensure that the receiver object is
subsequently in canonical form. There is a serious possibility for incorrect usage. It
is possible to set RationalNumber::m_denominator to 0 by calling, for example,
someRationalNumber.denominator(0);. This error is not checked in this member
function. In practice, this is unacceptable, but currently, the means for error
handling have not been introduced. The last statement of both setter methods is
return *this;. Each member function is called for a particular object. The question
is how to refer to this specific object. The answer is this. Each (non-static) member
function automatically defines this as a pointer to the object that is currently
being used. Placing the dereference operator, *, in front of the pointer gives the
currently active object itself. Thus, return *this; returns the currently active
object, by reference – as specified as the return type of the member function. Later,
other uses of this will be presented.

– 161 –

In Listing 72, the functions that perform arithmetic on rational numbers have three
parameters, for example void add(const RationalNumber& a,const
RationalNumber& b,RationalNumber& r);. The first operand of the addition is a, its
second operand is b, and the result is stored in r, which is passed by reference. In
the RationalNumber class, the first operand is now the receiver object, i.e.
add(a,b,r) becomes a.add(b). The second operand b of add(a,b,r) becomes the
first and only parameter in a.add(b). The result stored in r in add(a,b,r) is
subsequently stored in the receiver object. That is, a in a.add(b) corresponds to r in
add(a,b,r). Finally, the modified object is returned by return *this;. This allows
further use of this object in an expression. None of the arithmetic methods is
marked with the [[nodiscard]] attribute. For this reason, the result of executing
any of these methods can be ignored. Because of this design, each arithmetic
method modifies its receiver object. Therefore, none of them is declared as const.

It is worth noting that these reshaped member functions actually serve two
purposes: First, they perform the corresponding arithmetic operation, and second,
they assign the result to the receiver object. Therefore, one could also argue that
these member functions could be renamed to RationalNumber::assignSum(),
RationalNumber::assignDifference(), etc. However, for the sake of simplicity, the
already introduced identifiers are kept unchanged.

The RationalNumber::input() member function reads new values for the receiver
object’s member attributes from the standard input and prevents input of 0 for
RationalNumber::m_denominator. It also calls the normalize() member function.
RationalNumber::output() sends the formatted values of the receiver object’s
member attributes to cout. Both member functions return the receiver object by
reference.

It is worth noting that the definitions of the constructor, getter and setter methods
appear at the point of their declaration. This has the effect that they are declared
inline.

A function or member function is implicitly declared inline if its declaration is also a
definition. That is, it must be reachable in the translation unit where it is accessed.
An inline declaration suggests to the compiler that the code implementing the inline
function be inserted when that function is called. Or, more explicitly, the compiler
does not generate code for a function call, but inserts the code to be executed
directly at the point of the function call. A compiler is not obliged to follow this
suggestion. If the compiler applies inlining, it may affect code size and performance.
A function can also be explicitly declared inline by prefixing its declaration with the
keyword inline. In this case, the definition of the function must be also available in
the same translation unit, for example, after its declaration. A concrete example for
functions explicitly declared inline is not presented in this text. For more
information on inlining see (Inline Specifier - Cppreference.Com, n.d.).

– 162 –

The remaining member functions of RationalNumber as well as the one free
function are declared at the beginning of source file, but their definitions appear
after the main() function. When a member function is defined outside its class, its
name must be preceded by the name of the class followed by the scope operator, ::,
for example void RationalNumber::normalize(). This indicates that the function is
actually a member function and not a free function.

Some changes in main() have to be mentioned. Since a.add(b) will change the state
of a, the state of a must be saved so that it can be restored afterwards. This is done
by the previous assignment c = a;. After calling a.add(b) and a is output, the
previous state of a is restored by the assignment a = c;. This pattern is repeated
with one exception. Before calling RationalNumber::divide(), the state of a is
restored by explicitly calling the corresponding getter and setter methods, so they
are called at least once directly in main(). The only function that is not directly
called in main() is RationalNumber::normalize(), since it is a private member of
RationalNumber.

Now it is time to take a closer look at performing arithmetic operations with
rational numbers. The expression to be calculated is 1

2
⋅1
2
+ 1
4

.

The code snippets in Listings 86, 87, and 88 show several ways to do this. Listing 86
shows a first possibility.

1 RationalNumber a { 1,2 }, b { 1,2 }, c { 1,4 };
2 a.multiply(b);
3 a.add(c);
4 a.output();
5 cout << endl;

Listing 86: One calculation per statement

It is also possible to combine all arithmetic operations into a single expression, as
shown in Listing 87. The call to a.multiply(b) returns a reference to a. Thus, the
result of the call to a.add(b) can be reused immediately. By applying the dot
operator, ., add() is called for the resulting object, namely a.multiply(b).add(c);.
Finally, the result returned by add() is ignored.

1 a.multiply(b).add(c);
2 a.output();
3 cout << endl;

Listing 87: An expression that combines all calculations

A third possibility is shown in Listing 88. Here, a is multiplied by itself.
1 RationalNumber a { 1,2 }, b { 1,2 }, c { 1,4 };
2 a.multiply(a).add(c);
3 a.output();
4 cout << endl;

Listing 88: Multiplying a RationalNumber variable by itself

– 163 –

Now the expression to be calculated is varied: 1
2
÷1
2
+ 1
4

. Executing the code

snippet shown in Listing 89 gives the expected result, namely 5
4

.

1 RationalNumber a { 1,2 }, b { 1,2 }, c { 1,4 };
2 a.divide(b).add(c);
3 a.output();
4 cout << endl;

Listing 89: Dividing different RationalNumbers gives the correct result

However, executing the code snippet shown in Listing 90 outputs 3
4

, which is not

the correct result.
1 RationalNumber a { 1,2 }, b { 1,2 }, c { 1,4 };
2 a.divide(a).add(c);
3 a.output();
4 cout << endl;

Listing 90: Dividing RationalNumber by itself gives wrong results

The reason is that the implementation of RationalNumber::divide() first modifies
RationalNumber::m_numerator and then uses this modified value to calculate
RationalNumber::m_denominator. Why is this possible? Well, a is passed as a
reference to const by the alias r, which prevents r from being modified. But a is
also the currently active object, which is not const (just a reminder,
RationalNumber::add() is not declared as const). This allows a to be modified,
which is exactly what the design intends. This is a serious deficiency!

In fact, there are various possible fixes. One is to change only the implementation of
RationalNumber::divide(), as shown in Listing 91.

1 RationalNumber& RationalNumber::divide(const RationalNumber& r)
2 {
3 RationalNumber temp { r };
4 m_numerator = m_numerator * temp.denominator();
5 m_denominator = m_denominator * temp.numerator();
6 normalize();
7 return *this;
8 }

Listing 91: Improved implementation of RationalNumber::divide()

This has the charm that it does not change the declaration of RationalNumber.
Keeping the interface the same while changing its implementation is an application
of information hiding. The ugly drawback is that it is specific to
RationalNumber::divide() and is not motivated by functional requirements of
rational number arithmetic, but simply by the specifics of the underlying design.
Thus, it is not a general solution, but a specific fix that must be thoroughly
documented. Otherwise, another programmer might stumble upon the seemingly
deviant implementation and undo it to make it match the other implementations. In

– 164 –

addition, other member functions may have similar bugs. Fixing them all ad-hoc is
not a good solution.

A simple fix is to change the declaration of the member function
RationalNumber::divide() so that its parameter is passed by value (Listing 92).

1 RationalNumber& RationalNumber::divide(RationalNumber r)
2 {
3 m_numerator = m_numerator * r.denominator();
4 m_denominator = m_denominator * r.numerator();
5 normalize();
6 return *this;
7 }

Listing 92: Changing the declaration of RationalNumber::divide()

At a first glance, Listing 92 shows a nice solution, since it is only a small change and
the implementation remains untouched. But it is a change to the interface that
violates modularization.

Nevertheless, it is a good idea to apply this fix to all member functions for which it
is appropriate,. In general, passing RationalNumber exemplars by value rather than
as reference to const becomes an overall design decision. A RationalNumber passed
by value can never be identical to the receiver object. Consequently, a change in the
receiver object can never change the state of the RationalNumber passed as
parameter by value.

The question is how to identify such design problems and possible sources of error?
One way is to thoroughly analyze the source code and try to identify such critical
parts. Another is comprehensive testing, not only with different test data, but also
with different arrangements of expressions and statements.

5.3.4. Class Design Based on Value Semantics
The design of the program shown in Listing 93 is based on value semantics. Besides
creation of exemplars, input, and output, the other functions and member functions
do not change the state of any part of the program.

1 /*! \file RationalNumberClassValueSemantics.cpp
2 *
3 * Implements arithmetic for rational numbers
4 * represented by a class
5 * using value semantics.
6 *
7 * \author Ulrich Eisenecker
8 * \date December 14, 2023
9 */

10
11 #include <iostream>
12 #include <cstdint> // Because of intmax_t.
13 #include <cmath> // Because of abs().
14 #include <numeric> // Because of gcd().
15
16 using namespace std;

– 165 –

17
18 /*! Returns -1 if n < 0, 0 if n == 0, +1 if n > 0.
19 */
20 [[nodiscard]] intmax_t sign(const intmax_t& n);
21
22 /*! Represents rational number as class.
23 */
24 class RationalNumber
25 {
26 public:
27 /*! Constructs a normalized RationalNumber exemplar
28 * with n for m_numerator and d for d_denominator;
29 * default value for n is 0,
30 * default value for d is 1.
31 */
32 RationalNumber(const intmax_t& n = 0, const intmax_t& d = 1):
33 m_numerator { n }, m_denominator { d }
34 {
35 normalize();
36 }
37 /*! Returns m_numerator as reference to const.
38 */
39 [[nodiscard]] const intmax_t& numerator() const
40 {
41 return m_numerator;
42 }
43 /*! Returns m_denominator as reference to const.
44 */
45 [[nodiscard]] const intmax_t& denominator() const
46 {
47 return m_denominator;
48 }
49 /*! Adds rational numbers *this and r,
50 * and returns result as value.
51 */
52 [[nodiscard]] RationalNumber add(const RationalNumber& r) const;
53 /*! Subtracts rational number r from *this,
54 * and returns result as value.
55 */
56 [[nodiscard]] RationalNumber subtract(const RationalNumber& r) const;
57 /*! Multiplies rational numbers *this and r,
58 * and returns result as value.
59 */
60 [[nodiscard]] RationalNumber multiply(const RationalNumber& r) const;
61 /*! Divides rational numbers *this by r,
62 * and returns result as value.
63 */
64 [[nodiscard]] RationalNumber divide(const RationalNumber& r) const;
65 /*! Outputs rational number to cout.
66 */
67 void output() const;
68 private:
69 /*! Normalizes rational number,
70 * i.e., canonical form and m_denominator > 0.
71 */
72 void normalize();
73 /*! Holds numerator of rational number.
74 * By default, numerator is initialized to 0.
75 */
76 intmax_t m_numerator { 0 },
77 /*! Holds denominator of rational number.
78 * By default, denominator is initialized to 1.
79 */
80 m_denominator { 1 };
81 };
82
83 /*! Inputs rational number from cin

– 166 –

84 * and returns it as value.
85 */
86 [[nodiscard]] RationalNumber inputRationalNumber();
87
88 /*! Executes each free function and
89 * each member function of RationalNumber
90 * at least once.
91 */
92 int main()
93 {
94 cout << "Helper functions ..." << endl;
95 intmax_t m { }, n { };
96 cout << "Enter m: ";
97 cin >> m;
98 cout << "Enter n: ";
99 cin >> n;

100 cout << "Sign of " << m << " = " << sign(m) << endl;
101 cout << "Sign of " << n << " = " << sign(n) << endl;
102
103 cout << "\n\nRational number arithmetics ..."
104 << endl;
105 cout << "Enter 1st rational number\n";
106 RationalNumber a { inputRationalNumber() };
107 cout << "Numerator (a) = " << a.numerator()
108 << "\nDenominator (a) = " << a.denominator()
109 << endl;
110 cout << "Enter 2nd rational number\n";
111 RationalNumber b { inputRationalNumber() };
112 cout << "sum = ";
113 RationalNumber apb { a.add(b) };
114 apb.output();
115 cout << "\ndifference = ";
116 RationalNumber amb { a.subtract(b) };
117 amb.output();
118 cout << "\nproduct = ";
119 RationalNumber atb { a.multiply(b) };
120 atb.output();
121 cout << "\nquotient = ";
122 RationalNumber adb { a.divide(b) };
123 adb.output();
124 cout << endl;
125 }
126
127 intmax_t sign(const intmax_t& n)
128 {
129 if (n < 0)
130 {
131 return -1;
132 }
133 if (n > 0)
134 {
135 return +1;
136 }
137 return 0;
138 }
139
140 RationalNumber RationalNumber::add(const RationalNumber& r) const
141 {
142 return { m_numerator * r.m_denominator
143 + m_denominator * r.m_numerator,
144 m_denominator * r.m_denominator };
145 }
146
147 RationalNumber RationalNumber::subtract(const RationalNumber& r) const
148 {
149 return { m_numerator * r.m_denominator
150 - m_denominator * r.m_numerator,

– 167 –

151 m_denominator * r.m_denominator };
152 }
153
154 RationalNumber RationalNumber::multiply(const RationalNumber& r) const
155 {
156 return { m_numerator * r.m_numerator,
157 m_denominator * r.m_denominator };
158 }
159
160 RationalNumber RationalNumber::divide(const RationalNumber& r) const
161 {
162 return { m_numerator * r.m_denominator,
163 m_denominator * r.m_numerator };
164 }
165
166 void RationalNumber::output() const
167 {
168 cout << '('
169 << m_numerator
170 << '/'
171 << m_denominator
172 << ')'
173 << flush;
174 }
175
176 void RationalNumber::normalize()
177 {
178 intmax_t divisor { gcd(m_numerator,m_denominator) };
179 m_numerator = sign(m_numerator) * sign(m_denominator)
180 * abs(m_numerator) / divisor;
181 m_denominator = abs(m_denominator) / divisor;
182 }
183
184 RationalNumber inputRationalNumber()
185 {
186 intmax_t numerator { 0 },
187 denominator { 1 };
188 cout << "numerator: " << flush;
189 cin >> numerator;
190 do
191 {
192 cout << "denominator: " << flush;
193 cin >> denominator;
194 if (denominator == 0)
195 {
196 cerr << "Error, denominator may not be 0!"
197 << endl;
198 }
199 } while (denominator == 0);
200 return { numerator, denominator };
201 }

Listing 93: RationalNumberClassValueSemantics.cpp

This has consequences for some functions related to RationalNumber.

• Both setter methods are removed, because they would change the state of a
RationalNumber.

• The member functions that perform arithmetic on rational numbers will
return their result as a new exemplar of RationalNumber by value. The result
of calling an arithmetic method may no longer be ignored, since it is the only

– 168 –

effect the method has. For this reason, each of the corresponding declarations
is prefixed with the [[nodiscard]] attribute.

• It is not possible to have a member function RationalNumber::input(), since
it would modify an already existing RationalNumber. For this reason the free
function inputRationalNumber() takes over this task and returns a rational
number.

The sign() function has not changed, so there is no need to explain it again. The
free function inputRationalNumber() was justified immediately before.

The RationalNumber class deserves discussion.

Its private section defines the members RationalNumber::m_numerator and
RationalNumber::m_denominator. The constructor calls
RationalNumber::normalize(), a private member function to put the numerator
and denominator of a rational number into canonical form. Therefore,
RationalNumber::m_numerator and RationalNumber::m_denominator must be
modifiable, and RationalNumber::normalize() cannot be declared as a const
member function.

Now to the public part. The constructor is identical to that of RationalNumber in
Listing 85. The same applies to the getter methods for numerator and denominator.
There are two small changes to RationalNumber::output(). In the version with
value semantics, the return value is void. Therefore it can be declared as a const
member function.

All arithmetic member functions are declared as const, since none of them changes
the state of the receiver object. Each of them uses uniform initialization to return a
new exemplar of RationalNumber containing the result.

An interesting property of RationalNumber and its associated functions is that once
a valid RationalNumber has been constructed, its state cannot be changed because
all setter methods have been removed.

There are some changes in the main() function. The setter methods are not called
because they are no longer present. A new exemplar of RationalNumber is defined
and initialized with the result of calling an arithmetic member function of
RationalNumber. This is necessary for Doxygen to create a complete call graph for
main(). Simply writing statements like a.add(b).output(); does not result in a
corresponding link in the call graph generated by Doxygen.

– 169 –

5.3.5. Reference- vs. Value-Based Design
The programs shown in Listings 85 and 93 implement an abstract data type
RationalNumber. Their main difference is that one program provides the ability to
modify an exemplar of RationalNumber after it is created, while the other does not.

The version with reference-based design has two weaknesses. First, in arithmetic
member functions, the same object can be both a mutable receiver object and a
parameter passed as a reference to const. This can lead to incorrect calculations.
Several applicable fixes were subsequently presented. Second, the setter method
RationalNumber::denominator() may set RationalNumber::m_denominator to 0,
resulting in an invalid rational number. This cannot be avoided, but this error can
in principle be detected and handled. How to do this is not covered in this text.

The version with value-based design also has two shortcomings. First,
RationalNumber::m_numerator and RationalNumber::m_denominator cannot be
declared as const data members because they are modified by
RationalNumber::normalize(), which is called in the constructor to ensure the
canonical form of a RationalNumber. An obvious workaround would be to move the
necessary calculations to the initializer list of the constructor. This would result in
less readable and less intentional code. The free function inputRationalNumber() is
not turned into a member function, as this would require modifying a
RationalNumber after it is created. In fact, it would be possible to turn it in a so-
called static member function of RationalNumber. This will be explained later in
Section Overloading Operators for RationalNumber .

Both versions also have their own peculiarities in terms of debugging. This will be
demonstrated using the member function RationalNumber::add(). It is called with
the receiver object set to 1/3 and the parameter object set to 2/5.

An initial example for debugging is presented in the Example for Debugging Section.
In the following it is assumed that the source program has been compiled with an
option to generate debug information and that a debugger with a graphical user
interface is available.

First, the reference-based design program is debugged. A breakpoint was set to the
first executable line of RationalNumber::add(), as indicated by the red filled circle.
The debugger then executed the program until the breakpoint was reached. A total
of three rational numbers must be entered in a console window until program
execution is paused. The value of the first rational number is not relevant. The
second rational number should be 1/3, the third 2/5. The screenshot in Figure 33
shows the source code, the call stack and the watches after the break point was
reached at the first statement.

– 170 –

Figure 33: Debugging the reference-based program, part 1

The bottom window in Figure 33 displays the call stack. The top function is
RationalNumber::add(), which has been called by main(). The active function is
highlighted by a red background. Interestingly, this line shows the value of this, i.e.
the memory address of the receiver object, as the first parameter of this member
function. This is appropriate, because this can be considered the implicit first
parameter of any member function. The second parameter refers to r.
Unfortunately, its memory address is not visible here. If it were visible, it would be
possible to see that the two addresses are different.

The fact that the memory address of r is not visible in the call stack, is not
problematic. The middle window shows the watches to which m_numerator and
m_denominator have been added as local variables. The top lines of the Watches
window show the function arguments, namely this and r, as well as the value this
and the memory address of r. Different memory addresses mean different objects.
So it is not one and the same object being accessed in two different ways (non-const
this and parameter passed by reference). In the following, the data members of r
have been expanded so their values are displayed.

– 171 –

Stepping over the lines of RationalNumber::add(), the local variables m_numerator
and m_denominator change their values. This way it becomes clear how the values
of the variables change incrementally.

The screenshot in Figure 34 shows the same windows, but now just before the
return of RationalNumber::add(), as marked by the yellow filled arrowhead.

Figure 34: Debugging the reference-based program, part 2

The local variables m_numerator and m_denominator, i.e. the data members of the
active object to which this points, now have the corresponding values.

With the help of the debugger it is possible to follow the execution of the program.
The different debugging windows allow to switch interactively between the active
function and its callers. In this way the debugger supports the understanding of the
execution of the program in its different states. Exactly how this is done is difficult
to explain in a written text. It should be explored in an interactive debugging
session.

Next, the value-based design program is debugged (Figure 35). The arrangement of
the data and the windows is exactly the same as before.

– 172 –

Figure 35: Debugging the value-based program, part 1

The calculation of the resulting rational number is spread over three lines. Of
course, it is possible to step over the individual lines. But this does not change the
content of the Watches window. This is because there is no variable for the
temporary object created for the result in the Watches window, and the other
variables do not change. If the debugger supports it, one can evaluate expressions
or sub-expressions. The screenshot immediately before exiting
RationalNumber::add() (Figure 36) shows that the watches and the function call
stack have not been changed. As in the reference-based design version, it is of
course possible to use the debugger to check whether variables have the expected
values and in what order the functions call each other. Ultimately, this will not lead
to surprises, since in most cases the objects in a value-based design do not have
state changes during execution of the program.

– 173 –

Figure 36: Debugging the value-based program, part 2

5.4. Splitting of Programs
The program shown in Listing 85 consists of more than 200 lines of code, including
comments and documentation comments. That’s big enough to think about how to
break it into smaller pieces. Why is this important? There are two main reasons:

1. The bigger a program is, the more time it takes to read and understand it.
2. Some parts of a program are very specific, but other parts can possibly be

reused in other programs. Therefore, it is advantageous to effectively isolate
these parts of a program.

Which guidelines help to identify suitable parts? Modularity is an important
principle of software engineering that can be applied here. Modularity is
about breaking a program down into parts, called modules. Each module
should have a high degree of cohesion. That is, it should consist of functions
and types that are closely related, either because they depend on each other or
because they belong together from a technical point of view. In addition, a

– 174 –

module should have a low coupling. That means, it should have minimal
dependencies on other modules.

With modularity in mind, a first division can be made between main() and the rest
of the program. The sole purpose of main() is to demonstrate the use of the
RationalNumber class and its member functions, and free functions required to
implement some of the member functions of RationalNumber.

The sign() function is used exclusively in RationalNumber::normalize(). This is
RationalNumber’s only dependency on it. This function can be classified as a
potentially useful general mathematical function that for some reason is not present
in the C++ standard library. From a functional point of view, it can be classified as
math-helper function. The rest is the RationalNumber class. Table 16 shows the
corresponding classification of the functions of the
RationalNumberClassReferenceSemantics.cpp program.

Name main rational_number math_helper

Contains main() RationalNumber sign()

Depends on RationalNumber
sign()

sign() –

Table 16:Classification of functions

In the first line the previously identified modules are mentioned. The names
rational_number and math_helper were chosen this way because they will be used
as file names later. The second line indicates which elements are contained in the
module listed in the table header. A look at the contained elements allows to judge
the cohesion of the respective module. The third line indicates which elements in
other modules the respective module depends on. This allows an evaluation of the
coupling of the corresponding module.

Dependencies on parts of the standard library are not listed in Table 16, for example
<iostream> or <cmath>.

Modularity is the prerequisite for another principle of software engineering,
namely the already mentioned information hiding (Abstract Data Types). This
principle leads also to an additional division of the program files. To support the
repeated use of modules such as rational_number and math_helper, these are
further divided into header and implementation files. A header file contains all the
information required to use its elements, and the corresponding implementation
file contains all the code that is not relevant to the use of the header file. This
division does not apply to main, since main is the client of RationalNumber and
sign() and is not eligible for further use.

– 175 –

One convention – among others – is to append the extension .hpp to C++ header
files, and the extension .cpp to implementation files. Of course, an implementation
file must know the contents of its associated header file. Therefore, it includes its
header file with the preprocessor directive #include. math_helper.cpp includes
math_helper.hpp, rational_number.cpp includes rational_number.hpp, and
main.cpp includes rational_number.hpp to create exemplars of RationalNumber
and use them.

Important Notice

To practically understand the following content, accessing a C++ compiler through a
browser window is no longer sufficient. Instead, a C++ compiler and the necessary
development tools, especially make, must be available for execution in a console
window. The following examples use g++ and make, which usually installs along
with g++.

5.4.1. Header and Implementation Files
The steps for transforming a single program into modules that can be compiled
separately and linked to form an executable program are introduced below. To
highlight these steps, all documentation comments have been removed. They will be
restored later.

In the following it is assumed that all files are contained in a (sub)directory named
RatNumRefSem_1.

Listing 94 contains the prototype of the math_helper function. The function
prototype has been slightly modified compared to the program in Listing 66. Since
intmax_t is defined in <cstdint>, this header file must be included. Since Listing 94
will be developed later in its own header file, a global or selective import of
namespaces is not useful. Therefore, intmax_t must be fully qualified with its
defining namespace, namely std::intmax_t.

1 #include <cstdint> // Because of intmax_t
2
3 [[nodiscard]] std::intmax_t sign(const std::intmax_t& n);

Listing 94: RatNumRefSem_1/math_helper.hpp

The implementations of the sign() function is almost unchanged (Listing 95).
Nevertheless, some details need to be explained.

1. #include "math_helper.hpp"
2.
3. using namespace std;
4.
5. intmax_t sign(const intmax_t& n)
6. {
7. if (n < 0)
8. {

– 176 –

9. return -1;
10. }
11. if (n > 0)
12. {
13. return +1;
14. }
15. return 0;
16. }

Listing 95: RatNumRefSem_1/math_helper.cpp

The corresponding header file containing the function prototype is included with
#include "math_helper.hpp". This differs from including header files from the
standard library, for which angle brackets are used. The compiler, or more precisely
the preprocessor, looks in the active directory for a header file enclosed in double
quotes. If a header file is located in another directory, the name of the header file
must be prefixed with either an absolute path or a relative path with respect to the
active directory.

Since Listing 95 shows an implementation file, it is acceptable to import all
namespace std identifiers at once as long as no collision of identifiers occurs. This is
a good opportunity to provide some explanation about importing namespaces.

Namespaces or namespace identifiers should never be imported in a header
file. Such an import would affect all files including this header file. It could lead to
name collisions and would contradict the purpose of namespaces. In header files,
the identifiers of all namespace must be fully qualified. In implementation files,
it is a matter of personal taste or code writing guidelines whether to import
identifiers from namespaces or to use fully qualified identifiers. Of course, if names
of identifiers collide, the use of qualified identifiers is essential.

The header file that defines the RationalNumber class is shown in Listing 96. While
this is a definition of RationalNumber, it does not contain the definitions of the
member functions. These are contained in the corresponding implementation file.

1 #include <cstdint> // Because of intmax_t.
2
3 class RationalNumber
4 {
5 public:
6 RationalNumber(const std::intmax_t& n = 0, const std::intmax_t& d = 1);
7 [[nodiscard]] const std::intmax_t& numerator() const
8 {
9 return m_numerator;

10 }
11 [[nodiscard]] const std::intmax_t& denominator() const
12 {
13 return m_denominator;
14 }
15 RationalNumber& numerator(const std::intmax_t& n);
16 RationalNumber& denominator(const std::intmax_t& d);
17 RationalNumber& add(RationalNumber r);
18 RationalNumber& subtract(RationalNumber r);
19 RationalNumber& multiply(RationalNumber r);
20 RationalNumber& divide(RationalNumber r);
21 RationalNumber& input();

– 177 –

22 RationalNumber& output();
23 private:
24 void normalize();
25 std::intmax_t m_numerator { 0 },
26 m_denominator { 1 };
27 };

Listing 96: RatNumRefSem_1/rational_number.hpp

There are some changes compared to the program shown in Listing 85. The
implementation of the constructor has been moved to the implementation file. This
may result in a minor performance penalty that is unlikely to have any
consequences for applications that use RationalNumber. Consequently, the
implementation of RationalNumber::normalize() remains in the implementation
file. In this way, rational_number.hpp is largely decoupled, since it includes only one
header file. The implementations of the setter methods for
RationalNumber::m_numerator and RationalNumber::m_denominator have also
been shifted to the implementation file.

The most important change is that the arguments of arithmetic member functions
are now passed by value rather than references to const. This eliminates the error
when a RationalNumber is divided by itself. A copied argument object can never be
the same as the receiver object of a member-function call. But this has
consequences. When passing an argument as a reference to const, both a variable
of the expected type and an arbitrary expression can be passed, for which a
temporary object of the expected type can be automatically created. Passing an
argument by value always creates a local variable of the expected type, either by
copying or by applying a valid conversion. Also, passing an argument by value
prevents inclusion polymorphism. What inclusion polymorphism is and the
consequences of preventing it are not explained in this text.

Listing 96 shows only declarations of member functions of RationalNumber, in
addition to two getter methods. The only changes from the previous versions are
that the arguments of the arithmetic member functions are now passed by value so
that they match their declarations in the corresponding header file.

Listing 97 shows the implementation file that corresponds to the header file shown
in Listing 9. At the beginning, <iostream> is included as usual, and all the identifiers
of namespace std are imported. This is fine in an implementation file, since it does
not affect other files. Then math_helper.hpp and rational_number.hpp are included
using double quotes, namely #include "math_helper.hpp" and #include
"rational_number.hpp".

1 #include <iostream>
2 #include <numeric> // Because of gcd().
3 using namespace std;
4
5 #include "math_helper.hpp"
6 #include "rational_number.hpp"
7

– 178 –

8 RationalNumber::RationalNumber(const intmax_t& n, const intmax_t& d):
9 m_numerator { n }, m_denominator { d }

10 {
11 normalize();
12 }
13
14 RationalNumber& RationalNumber::numerator(const intmax_t& n)
15 {
16 m_numerator = n;
17 normalize();
18 return *this;
19 }
20
21 RationalNumber& RationalNumber::denominator(const intmax_t& d)
22 {
23 m_denominator = d;
24 normalize();
25 return *this;
26 }
27
28 RationalNumber& RationalNumber::add(RationalNumber r)
29 {
30 m_numerator = m_numerator * r.denominator()
31 + m_denominator * r.numerator();
32 m_denominator = m_denominator * r.denominator();
33 normalize();
34 return *this;
35 }
36
37 RationalNumber& RationalNumber::subtract(RationalNumber r)
38 {
39 m_numerator = m_numerator * r.denominator()
40 - m_denominator * r.numerator();
41 m_denominator = m_denominator * r.denominator();
42 normalize();
43 return *this;
44 }
45
46 RationalNumber& RationalNumber::multiply(RationalNumber r)
47 {
48 m_numerator = m_numerator * r.numerator();
49 m_denominator = m_denominator * r.denominator();
50 normalize();
51 return *this;
52 }
53
54 RationalNumber& RationalNumber::divide(RationalNumber r)
55 {
56 m_numerator = m_numerator * r.denominator();
57 m_denominator = m_denominator * r.numerator();
58 normalize();
59 return *this;
60 }
61
62 RationalNumber& RationalNumber::input()
63 {
64 cout << "numerator: " << flush;
65 cin >> m_numerator;
66 do
67 {
68 cout << "denominator: " << flush;
69 cin >> m_denominator;
70 if (m_denominator == 0)
71 {
72 cerr << "Error, denominator may not be 0!"
73 << endl;
74 }

– 179 –

75 } while (m_denominator == 0);
76 return *this;
77 }
78
79 RationalNumber& RationalNumber::output()
80 {
81 cout << '('
82 << m_numerator
83 << '/'
84 << m_denominator
85 << ')'
86 << flush;
87 return *this;
88 }
89
90 void RationalNumber::normalize()
91 {
92 intmax_t divisor = gcd(m_numerator,m_denominator);
93 m_numerator = sign(m_numerator) * sign(m_denominator)
94 * abs(m_numerator) / divisor;
95 m_denominator = abs(m_denominator) / divisor;
96 }

Listing 97: RatNumRefSem_1/rational_number.cpp

Now it is possible to compile the implementation files separately. How this can be
done is explained using a terminal window and g++. First, a new terminal window
is opened in the RatNumRefSem_1 directory on a Unix-based system. Then the dialog
shown in Figure 37 is executed. User inputs are formatted in bold, corresponding
system outputs are formatted in italics.

– 180 –

Last login: Mon Jun 7 17:09:17 on ttys000
user@computer RatNumRefSem_1 % ls
main.cpp math_helper.hpp rational_number.hpp
math_helper.cpp rational_number.cpp
user@computer RatNumRefSem_1 % g++ -c -std=c++20 math_helper.cpp
user@computer RatNumRefSem_1 % ls
main.cpp math_helper.hpp rational_number.cpp
math_helper.cpp math_helper.o rational_number.hpp
user@computer RatNumRefSem_1 % g++ -c -std=c++20 rational_number.cpp
user@computer RatNumRefSem_1 % ls
main.cpp math_helper.hpp rational_number.cpp rational_number.o
math_helper.cpp math_helper.o rational_number.hpp
user@computer RatNumRefSem_1 % g++ -c -std=c++20 main.cpp
user@computer RatNumRefSem_1 % ls
main.cpp math_helper.cpp math_helper.o rational_number.hpp
main.o math_helper.hpp rational_number.cpp rational_number.o
user@computer RatNumRefSem_1 % g++ -o demo math_helper.o rational_number.o main.o
user@computer RatNumRefSem_1 % ./demo
Enter 1st rational number
numerator: 1
denominator: 2
Enter 2nd rational number
numerator: 3
denominator: 4
sum = (5/4)
difference = (-1/4)
product = (3/8)
quotient = (2/3)
user@computer RatNumRefSem_1 %

Figure 37: Separate compilation, linking and execution

The ls command lists all files in a directory. Initially, the current directory contains
only three .cpp- and two .hpp-files. Next, the compiler is executed, here g++. The -c
option tells g++ to compile only, without linking. The -std=c++20 option enables the
support for C++20, and the only file to compile is math_helper.cpp. Running ls again
shows that math_helper.o was created by the previous execution of the compiler. The
next command compiles rational_number.cpp. As the subsequent execution of ls
shows, rational_number.o was created in this process. Now, main.cpp is compiled to
main.o. The extension .o is the standard for object files. Finally, the compiler is
invoked with the -o option. This option tells the compiler to create an executable file
with the name specified next, here demo. Since the following arguments all refer to
object files, the compiler performs only a link step to generate the specified output
file. Without checking the contents of the directory again, demo is executed by
typing ./demo. The rest is the dialog with the demo program that calls the main()
function.

– 181 –

5.4.2. Include Guard
Despite the fact that all implementation files have been compiled separately and
linked into an executable application, more needs to be done. If a header file is
included more than once, this can lead to problems due to duplicate definitions.
Also mutual recursive inclusion of header files can occur in principle. For this
reason, each header file must be prepared against multiple inclusion by using a so-
called include guard. Listings 98 and 99 demonstrate include guards. It is assumed
that the source files shown in Listings 98 and 99 are located in the subdirectory
called RatNumRefSem_2.

1 #ifndef MATH_HELPER_HPP
2 #define MATH_HELPER_HPP
3
4 #include <cstdint> // Because of intmax_t
5
6 [[nodiscard]] std::intmax_t sign(const std::intmax_t& n);
7 #endif // MATH_HELPER_HPP

Listing 98: RatNumRefSem_2/math_helper.hpp

The #ifndef preprocessor directive – its name is a contraction of if not defined –
realizes conditional inclusion. If the following macro name is not defined, the
following lines will be further processed by the preprocessor until the preprocessor
reaches the corresponding #endif preprocessor directive. The next preprocessor
directive, #define, defines exactly the macro name for which the preceding #ifndef
checks whether it is defined. When this header file is included again, the macro
name is already defined. Therefore, the preprocessor discards all following lines
until #endif is reached.

1 #ifndef RATIONAL_NUMBER_HPP
2 #define RATIONAL_NUMBER_HPP
3
4 #include <cstdint> // Because of intmax_t
5
6 class RationalNumber
7 {
8 public:
9 RationalNumber(const std::intmax_t& n = 0,const std::intmax_t& d = 1);

10 [[nodiscard]] const std::intmax_t& numerator() const
11 {
12 return m_numerator;
13 }
14 [[nodiscard]] const std::intmax_t& denominator() const
15 {
16 return m_denominator;
17 }
18 RationalNumber& numerator(const std::intmax_t& n);
19 RationalNumber& denominator(const std::intmax_t& d);
20 RationalNumber& add(RationalNumber r);
21 RationalNumber& subtract(RationalNumber r);
22 RationalNumber& multiply(RationalNumber r);
23 RationalNumber& divide(RationalNumber r);
24 RationalNumber& input();
25 RationalNumber& output();
26 private:
27 void normalize();

– 182 –

28 std::intmax_t m_numerator { 0 },
29 m_denominator { 1 };
30 };
31 #endif // RATIONAL_NUMBER_HPP

Listing 99: RatNumRefSem_2/rational_number.hpp

It is a convention that macro names are fully capitalized. Usually, the macro name is
the same as the header file name, with the dot replaced by an underscore. For
example, MATH_HELPER_HPP is used as the macro name for the include file
math_helper.hpp. It is a good idea to append the macro name as a comment to the
corresponding #endif directive. This clarifies to which conditional include directive
the #endif belongs.

These are the only changes to the files contained in the RatNumRefSem_2
subdirectory. It is still possible to manually compile all implementation files and
link them to an executable file, as shown above.

5.4.3. Preventing Name Collisions
In the header files all identifiers are defined in the global namespace. Therefore,
when including other header files, name collisions may occur. To avoid this
problem, identifiers in header files are placed in their own namespaces. Listing 100
shows how this is done. It is assumed that the source files shown in the following
listings are located in sub directory RatNumRefSem_3.

1 #ifndef MATH_HELPER_HPP
2 #define MATH_HELPER_HPP
3
4 #include <cstdint> // Because of intmax_t
5
6 namespace math_helper
7 {
8 [[nodiscard]] std::intmax_t sign(const std::intmax_t& n);
9 }

10 #endif // MATH_HELPER_HPP

Listing 100: RatNumRefSem_3/math_helper.hpp

The prototype of the sign() function is enclosed in the curly braces of the
namespace defined by namespace math_helper { /* ... */ }. Everything
declared here is a member of this namespace.

The implementations of the functions in the implementation file must be placed in
the same namespace as Listing 101 shows. Alternatively, each function definition
could be prefixed with the name of the declaring namespace followed by the scope
operator, ::. However, this leads to less change-friendly code and is therefore not
shown in this text.

1 #include "math_helper.hpp"
2
3 namespace math_helper
4 {

– 183 –

5 using namespace std;
6
7 intmax_t sign(const intmax_t& n)
8 {
9 if (n < 0)

10 {
11 return -1;
12 }
13 if (n > 0)
14 {
15 return +1;
16 }
17 return 0;
18 }
19 }

Listing 101: RatNumRefSem_3/math_helper.cpp

This applies accordingly to rational_helper, as Listings 102 and 103 show. Both
listings have been shortened to focus on the corresponding changes.

1 #ifndef RATIONAL_NUMBER_HPP
2 #define RATIONAL_NUMBER_HPP
3
4 #include <cstdint> // Because of intmax_t
5
6 namespace rational_number
7 {
8 class RationalNumber
9 {

10 public:
11 /* … */
12 private:
13 /* … */
14 };
15 }
16 #endif // RATIONAL_NUMBER_HPP

Listing 102: RatNumRefSem_3/rational_number.hpp (abridged)

1 #include <iostream>
2 #include <numeric> // Because of gcd().
3 using namespace std;
4
5 #include "math_helper.hpp"
6 using namespace math_helper;
7
8 #include "rational_number.hpp"
9

10 namespace rational_number
11 {
12 /* … */
13 }

Listing 103: RatNumRefSem_3/rational_number.cpp (excerpt)

In the implementation file shown in Listing 103, it is possible to import all
identifiers of the math_helper namespace with using namespace math_helper;,
because no name collisions occur. The file containing the main() function needs
only a minor adjustment, as Listing 104 shows.

1 #include <iostream>
2 using namespace std;
3

– 184 –

4 #include "rational_number.hpp"
5 using namespace rational_number;
6
7 int main()
8 {
9 /* … */

10 }

Listing 104: RatNumRefSem_3/main.cpp (excerpt)

After including rational_number.hpp, the statement using namespace
rational_number; was inserted. All these files together form a software development
project, because they are the basis for the creation of the executable application.
Due to the existing division of the files (header and implementation files) and the
chosen namespaces, the overall coupling between these files is reduced to a
necessary minimum.

Of course, it is still possible to compile the implementation files individually and
link the object files manually to an executable file. However, this is not practical for
larger projects and prone to errors. Therefore, the next step will be to automate this
creation process.

5.4.4. Make
In practice, applications can consist of dozens or hundreds of source files with
various dependencies and the project’s documentation. Sometimes all intermediate
files and automatically generated files need to be removed to put the project in a
clean state. Other tasks may include testing and profiling with associated special
artifacts. The following shows how the build process can be automated in terms of
generating code and documentation and resetting the project using the classical tool
make. Testing and profiling are not covered.

Figure 38 shows a so-called dependency graph, which displays the dependencies
between the files of the project.

– 185 –

demo

main.o

main.cpp rational_number.cpp math_helper.hpp math_helper.cpprational_number.hpp

rational_number.o math_helper.o

Figure 38: Dependency graph

The diagram is read from top to bottom. The boxes stand for files, the arrows for
directed dependencies. The executable demo depends on the object files main.o,
rational_number.o and math_helper.o. If any of the object files that demo depends on
has a newer date than demo, demo must be linked again. The same is true if demo
does not exist. If one of these object files does not exist, make looks for a rule to
create it and executes that rule.

The object file main.o depends on the source files main.cpp and rational_number.hpp.
If one of these source files is more recent than main.o, main.o must be recompiled.
The same applies if main.o does not exist. Without looking at the source files, it is
impossible to know that main.cpp includes rational_number.hpp and thus depends
on this header file. Therefore, this dependency must be explicitly specified. This
applies only to direct dependencies, but not to indirect ones. For example, it does
not make sense to explicitly specify a dependency from demo to
rational_number.hpp. Another dependency that must be explicitly specified is that
from rational_number.o to math_helper.hpp, since rational_number.cpp includes
math_helper.hpp.

The rest of the diagram can be read accordingly and requires no further
explanation.

So-called build automation tools – build tools for short – rely on these dependencies
to automate the build process of a piece of software including some of the
associated artifacts. make is one of the oldest and most widely used build tools. It is
usually installed together with g++. For this reason, in the following explanations of
automating the build process, make is used for illustration. There are numerous
other build automation tools that cannot be covered here. Also make can only be
explained superficially.

Having all the artifacts of a software project in a single directory would be
confusing. Therefore, a software development project is organized in different
directories. There is one directory that serves as the entry point for the project, for
example, RatNumRefSem. Within this project directory, there are subdirectories that
contain various files. In the following, it is assumed, that the src subdirectory
contains the source files, the obj subdirectory contains object and executable files,
and the doc subdirectory contains the documentation for the project. More
specifically, the src subdirectory contains the math_helper.hpp, math_helper.cpp,
rational_number.hpp, rational_number.cpp, and main.cpp files. The only difference
from the corresponding files in the RatNumRefSem_3 subdirectory is that all
documentation comments have been restored. Figure 39 shows the overall directory
structure.

– 186 –

RatNumRefSem/
|
+-----------src/
|
+-----------obj/
|
+-----------doc/

Figure 39: Example directory structure for a C++ project

This directory structure can vary, of course.

To use make, the project should contain a simple text file named GNUmakefile,
without any extension. This is similar to Doxygen looking for a file named Doxyfile
in the active directory. If make cannot find GNUmakefile in the active directory, it
looks for makefile or Makefile – in that order. With one of the options -f file, --file=file,
or -makefile=file, make can be explicitly instructed to use file as makefile. For
simplicity, a file named makefile is located in the project directory RatNumRefSem,
so to build the project, a terminal window is opened in the RatNumRefSem directory
and make is invoked without parameters to build the project.

Two basic components of a makefile are comments and rules. A comment starts with
and extends to the end of the line. A rule comprises one or more targets,
prerequisites, and recipes. In most cases a target is the name of a file that needs to be
created or updated. Usually there is only one target per rule. A target is followed by
a colon. After the colon the prerequisites of the target are listed. Typically, these are
the names of the files on which the target depends. Depends on means that the
target must be created if it does not exist, or it is recreated if it is obsolete with
respect to its prerequisites. If there is more than one prerequisite, they must be
separated by spaces. The next line contains the recipe for (re)building the target.
This recipe must be indented with exactly one tab. Using other whitespaces or more
than one tab is an error. A rule can have more than one recipe. All recipes must be
indented with exactly one tab.

Both components are shown in Listing 105, which contains a simple makefile to
create the executable file demo from the sources main.cpp, rational_number.hpp,
rational_number.cpp, math_helper.hpp, and math_helper.cpp. All files and
subdirectories should be located in a directory named RatNumRefSem.

1 # Makefile for RatNumRefSem, January 17, 2023, Author: Ulrich Eisenecker
2
3 # Rule 1: Link executable
4 obj/demo: obj/main.o obj/rational_number.o obj/math_helper.o
5 g++ -std=c++20 -o obj/demo obj/main.o obj/rational_number.o obj/math_helper.o
6
7 # Rule 2: Compile main.cpp
8 obj/main.o: src/main.cpp src/rational_number.hpp
9 g++ -std=c++20 -o obj/main.o -c src/main.cpp

10
11 # Rule 3: Compile math_helper.cpp
12 obj/math_helper.o: src/math_helper.cpp src/math_helper.hpp
13 g++ -std=c++20 -o obj/math_helper.o -c src/math_helper.cpp

– 187 –

14
15 # Rule 4: Compile rational_number.cpp
16 obj/rational_number.o: src/rational_number.cpp src/rational_number.hpp \
17 src/math_helper.hpp
18 g++ -std=c++20 -o obj/rational_number.o -c src/rational_number.cpp
19
20 # Rule 5: Delete all binaries and executable
21 clean:
22 rm -f obj/*
23 rm -rf doc/*
24
25 .PHONY: doc
26
27 # Rule 6: Generate documentation
28 doc:
29 doxygen

Listing 105: RatNumRefSem/makefile.simple

The first line contains a comment with some information. The following blank line
is ignored as all blank lines. The third line contains a comment stating that rule 1
follows immediately.

The first rule is of particular importance. When a makefile is called without
specifying a target, make attempts to update the target of the first rule. Other targets
are updated only if necessary to update the goal. The term goal refers to the target
which make should update.

The only target of rule 1 is obj/demo. If it does not exist or is obsolete with respect to
one of the object files mentioned as a prerequisite, it is (re)built.

The recipe calls the compiler and tells it to link the object files to a file named demo
in the subdirectory obj. The -o option specifies the name of the output file as next
argument. The -std=c++20 option tells the compiler to apply the latest C++ standard.
Actually, this is not relevant for linking, but it doesn’t harm. For the recipes that
compile source code, this option and its value are essential.

Rules 2 to 4 follow exactly the same scheme. Rule 4 introduces another new feature
related to makefiles. Its first line ends with \. This symbol indicates that this line
should continue with the next line as if it were written as a single line. There should
be no characters after \ other than carriage return or line feed.

Rule 5 is different. It uses a target that has no prerequisites, but two recipes. The
recipes do not create a file named clean. Therefore, the recipes are always executed,
when make is called with clean as parameter, namely make clean. The recipes
execute the shell command rm -f to remove all files (and also subdirectories)
contained in the obj and doc subdirectories. In this way, the entire project is put
into a clean state with regard to all automatically created files.

Before rule 6, .PHONY tells make that the following dependencies are not files that
need to be built. Therefore, specifying one of these as a targets will always execute
the recipes associated with a corresponding target. Here, only doc is listed as a

– 188 –

dependency. Running make doc in a terminal window will execute the
corresponding recipe that calls Doxygen to generate the documentation. Since
Doxygen is called without parameters, Doxyfile is used, which is also located in the
project directory.

Of course, clean could also have been added as a prerequisite of .PHONY. This would
prevent make from checking whether a file of that name exists, thus increasing the
performance when executing the makefile. If a file named clean is created during
the execution of the makefile, it must be listed as a dependency of .PHONY.
Otherwise, its recipe(s) will not be executed once the file named clean is created.

When copying the makefile shown in Listing 105 by typing, care must be taken to
ensure that each of the lines 5, 9, 13, 17, 21, 22, and 28 is indented by exactly one
tab. When using copy & paste it must be ensured that the indentation of these lines
is by exactly one tab and not by other whitespaces. Otherwise make cannot process
the makefile correctly.

From a programming point of view, the makefile shown in Listing 105 has some
shortcomings. If the chosen directory structure is changed, e.g. ./src is renamed to
./source for some reason, this change has to be done nine times! This situation is
similar with the subdirectories ./obj or ./doc. Another example are the options to call
the compiler or the compiler itself. Changing one of these requires several
corrections in the makefile. This is annoying and error prone. This situation can be
improved by using variables. The makefile in Listing 106 defines the variables CXX,
CXXFLAGS, SRCDIR, and OBJDIR at the beginning. The variable names can be chosen
arbitrarily. However, some variable names are also used by implicit rules, for
example, CXX and CXXFLAGS. Implicit rules are not explained here. Normally,
variable names are completely capitalized.

1 # Makefile for RatNumRefSem, January 17, 2023, Author: Ulrich Eisenecker
2 # Version using variables
3
4 CXX = g++
5 CXXFLAGS = -std=c++20
6 SRCDIR = src
7 OBJDIR = obj
8
9 # Rule 1: Link executable

10 $(OBJDIR)/demo: $(OBJDIR)/main.o $(OBJDIR)/rational_number.o \
11 $(OBJDIR)/math_helper.o
12 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/demo $(OBJDIR)/main.o \
13 $(OBJDIR)/rational_number.o $(OBJDIR)/math_helper.o
14
15 # Rule 2: Compile main.cpp
16 $(OBJDIR)/main.o: $(SRCDIR)/main.cpp $(SRCDIR)/rational_number.hpp
17 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/main.o -c $(SRCDIR)/main.cpp
18
19 # Rule 3: Compile math_helper.cpp
20 $(OBJDIR)/math_helper.o: $(SRCDIR)/math_helper.cpp $(SRCDIR)/math_helper.hpp
21 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/math_helper.o -c $(SRCDIR)/math_helper.cpp
22
23 # Rule 4: Compile rational_number.cpp
24 $(OBJDIR)/rational_number.o: $(SRCDIR)/rational_number.cpp \

– 189 –

25 $(SRCDIR)/rational_number.hpp $(SRCDIR)/math_helper.hpp
26 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/rational_number.o -c \
27 $(SRCDIR)/rational_number.cpp
28
29 # Rule 5: Delete all binaries and executable
30 clean:
31 rm -f $(OBJDIR)/*
32 rm -rf doc/*
33
34 .PHONY: doc
35
36 # Rule 6: Generate documentation
37 doc:
38 doxygen

Listing 106: RatNumRefSem/makefile

A variable is defined by assigning a value to it with =, for example CXX = g++. To
refer to this variable later, it must be surrounded by parentheses preceded by a
dollar sign, for example, $(CXX) -c math_helper.cpp, which becomes g++ -c
math_helper.cpp. Now the compiler, options, or subdirectories can be easily
changed, since there is exactly one point at the beginning of the makefile, where the
corresponding variables are defined.

Lines 10, 12, 24, and 26 end with \, that is the continuation character introduced
above.

There is much more to say about makefiles. For example, there are implicit rules, it
is possible to use wildcards in filenames, makefiles can call other makefiles, and
much more. Unfortunately, an adequate introduction to make can not be given here.
A good source for more detailed information about make is the make manual itself,
(GNU Make Manual - GNU Project - Free Software Foundation, n.d.). (Breymann,
2023) devotes a separate chapter to make and presents a project file for almost
every C++ project, as the author himself claims. A compact and comprehensive
introduction written in a casual tone is (Lambert, n.d.).

Finally, Listing 107 shows the configuration file for Doxygen. It has the same
structure as the previously described configuration files for Doxygen.

1 # Doxyfile for RatNumberRefSem for Doxygen 1.9.1
2 PROJECT_NAME = RatNumberRefSem
3 OUTPUT_DIRECTORY = doc
4 INPUT = src/main.cpp src
5 GENERATE_LATEX = NO
6 HAVE_DOT = YES
7 CALL_GRAPH = YES
8 CALLER_GRAPH = YES
9 GRAPHICAL_HIERARCHY = YES

10 DIRECTORY_GRAPH = YES

Listing 107: RatNumRefSem/Doxyfile

While using Doxygen version 1.9.1, the author encountered a strange problem
regarding the call graph generated for the main() function. Despite the fact that the
member function RationalNumber::divide() is called on line 41, the call graph

– 190 –

shows no box for rational_number::RationalNumber::divide. Converting lines 39
and 40 of main() to comments has the effect that Doxygen now creates a call graph
for main() that includes the box for rational_number::RationalNumber::divide.
Unfortunately, the author could not find the cause for this erroneous behavior.

5.5. Overloading Operators
In the next iteration, operators for mathematical operations and stream insertion
and extraction for rational numbers will be added. In addition, the interface of
RationalNumber will be slightly changed with respect to stream insertion and
extraction.

Overloading operators does not provide new calculation capabilities. But the
availability of operators for user-defined types can significantly increase the
expressiveness and readability of programs.

5.5.1. Motivation for Overloading Operators
From the syntactic point of view, the mathematical formula (a + b) / (a - c) is easy to
understand. But how can this formula be represented with the abstract data type
RationalNumber implemented with reference semantics (subdirectory
RatNumRefSem)?

It is assumed, that a, b and c are variables of type RationalNumber.

The naive approach (a.add(b)).divide(a.subtract(c)); looks good. But it does
not work as expected because a is modified by all arithmetic member functions of
RationalNumber. The problem is illustrated by initializing a with 2/1, b with 3/1, and
c with 5/1.

The order of evaluating subexpressions by the C++ compiler is not specified. In fact,
the compiler can choose a different order when the same expression is evaluated
again (Order of Evaluation - Cppreference.Com, n.d.). Therefore, both possibilities,
i.e., evaluating a.add(b) first and then a.subtract(b), as well as the reversed order,
must be considered. Table 17 shows the first case, Table 18 the second.

State Initial a.add(b) a.subtract(c) a.divide(a)

Returned result – a a a

a 2/1 5/1 1/1 1/1
b 3/1 3/1 3/1 3/1
c 4/1 4/1 4/1 4/1

– 191 –

Table 17: Evaluation of (a.add(b)).divide(a.subtract(c)); (1st possibility)

State Initial a.subtract(c) a.add(b) a.divide(a)

Returned result – a a a

a 2/1 -2/1 1/1 1/1
b 3/1 3/1 3/1 3/1
c 4/1 4/1 4/1 4/1

Table 18: Evaluation of (a.add(b)).divide(a.subtract(c)); (2nd possibility)

Both possibilities lead to the same result, namely a being 1/1, which does not
correspond to the result of the evaluation of (a + b)/(a - c) according to mathematical
rules, namely -5/2.

The underlying problem is that calling a mathematical member function changes
the receiver object in the reference-based design. One way to solve this problem is
to introduce an additional variable as a copy of the initial value of the variable a, as
shown in Listing 108.

1 RationalNumber a { 2,1 }, b { 3,1 }, c {4,1 };
2 RationalNumber a_copy { a };
3 (a.add(b)).divide(a_copy.subtract(c));

Listing 108: Evaluation of (a.add(b)).divide(a_copy.subtract(c));

Now, both possible evaluation sequences – they are shown in Tables 19 and 20 –
give the expected result.

State Initial a.add(b) a_copy.subtract(c) a.divide(a_copy)

Returned result – a a_copy a

a 2/1 5/1 5/1 -5/2
a_copy 2/1 2/1 -2/1 -2/1
b 3/1 3/1 3/1 3/1
c 4/1 4/1 4/1 4/1

Table 19: Evaluation of (a.add(b)).divide(a_copy.subtract(c)) (1st possibility)

State Initial a_copy.subtract(c) a.add(b) a.divide(a_copy)

Returned result – a_copy a a

a 2/1 2/1 5/1 -5/2
a_copy 2/1 -2/1 -2/1 -2/1
b 3/1 3/1 3/1 3/1
c 4/1 4/1 4/1 4/1

– 192 –

Table 20: Evaluation of (a.add(b)).divide(a_copy.subtract(c)) (2nd possibility)

In both cases, a is now -5/2 which is the expected result.

In summary, the original mathematical formula must be transformed twice to
implement it with RationalNumber in reference-based design, namely
(a.add(b)).divide(a_copy.subtract(c)), where the declaration of a_copy is not
shown.

The value-based design of RationalNumber requires only one transformation to
represent the mathematical formula, namely RationalNumber result
{ a.add(b).divide(a.subtract(c)) }. This is because calling a mathematical
member function in value-based design always returns a new object and does not
change the receiver object. Therefore, the result of evaluating the expression is used
to initialize the result variable. In value-based design, the result of a function call
cannot be discarded (the corresponding member functions are declared with the
[[nodiscard]] attribute). Instead, it must be used somehow, for example in another
expression or to initialize another variable.

In both designs, overloading the arithmetic member functions of RationalNumber as
operators allows the mathematical formula to be represented as (a + b)/(a – c).
This is almost a one-to-one mapping from a requirement formulated in a
mathematical notation to its programmed representation!

Operator overloading is an integral part of C++ and its standard library. Therefore,
overloading the << and >> operators for stream insertion and extraction facilitates
the input and output of RationalNumber exemplars from and to streams.

5.5.2. The Syntax of Operator Overloading
Basically, an operator is a function or a member function that can be called with an
alternate syntax. This will be demonstrated later.

Many operators can be overloaded in C++. There are a few exceptions that cannot
be overloaded, namely

• . – Member access operator, also known as dot operator
• .* – Pointer to member operator
• ? : – Ternary or conditional operator
• :: – Scope resolution operator
• sizeof – Object size operator
• typeid – Object type operator

Three of them, the member access operator, the scope resolution operator and
sizeof, have already been used in the previous programs.

– 193 –

The remaining operators can be overloaded as member functions, and some of
them as free functions as well. Listing 109 shows how to overload operator+() as a
member function of the RationalNumber class in reference-based design.

1 RationalNumber RationalNumber::operator+(RationalNumber b) const
2 {
3 RationalNumber a { *this };
4 return a.add(b);
5 }

Listing 109: Overloading operator +() as a member function

An operator is declared with the keyword operator, followed by the symbol or the
identifier of the operator, in this case +. This is followed by the parameter list. If the
overloaded operator is unary, i.e. it has only one operand, the parameter list is
empty when the operator is overloaded as a member function. In this case, the only
operand is the receiver object, i.e. *this, which can be considered as implicit (first)
operand. If a binary operator is overloaded as a member function, exactly one
(explicit) parameter must be specified which serves as the second operand. All
binary operators are infix operators, i.e. the first operand is to the left of the
operator and the second operand is to the right of the operator. Therefore, all binary
operators that are overloaded as member functions have exactly one explicit
parameter. operator+() is a binary operator, so b is passed as a parameter of type
RationalNumber. The only ternary operator in C++ is : ?, which cannot be
overloaded. Therefore, an overloaded operator can have at most two operands. Like
all functions, the return type of an operator must be specified.

Type conversion operators have a somewhat different syntax; they are not
explained here. If the execution of an operator must not change the receiver object,
it should be declared as const, which is true in the concrete case.

A few more details need to be explained. First, the parameter b is passed by value to
avoid the problem first reported in the Class Design Based on Reference Semantics
Section. A second measure to address the problem is to first create a copy of the
receiver object, RationalNumber a { *this };, before calling
RationalNumber::add(). Also, the result is returned by value. Therefore, calling
RationalNumber::operator+() changes a, but not the receiver object. Consequently,
as mentioned earlier, the operator is marked as const. Since the addition of two
rational numbers is already implemented in the method RationalNumber::add(),
the corresponding code is not duplicated. Rather, the implementation of
RationalNumber::operator+() calls this method.

With a and b as exemplars of RationalNumber, operator+() can be called with two
syntax forms:

1. a + b
2. a.operator+(b)

– 194 –

The first form reflects the intention of operator overloading. The second form shows
that an operator is indeed just a (member) function. Therefore, it can be called like a
conventional (member) function.

There is an important aspect when overloading an operator as a member function:
The first operand must be an exemplar of the type for which the operator is being
overloaded. In this specific case, the receiver object must be a RationalNumber. This
is exactly the implementation shown in Listing 109. For the second operand, i.e. the
first parameter, this does not necessarily apply. Here, b is passed as a value. If b is a
RationalNumber, a copy of b is created, and this copy is used within the operator. If b
is not a RationalNumber, the compiler tries to convert b into a temporary object of
type RationalNumber. The constructor of RationalNumber can be called with only
one parameter. Therefore, this constructor becomes a type conversion constructor.
Any integer value is sufficient to create an exemplar of RationalNumber. For
example, RationalNumber r { 2 }; produces a rational number whose
m_numerator is 2 and whose m_denominator is 1. For this reason, operator+() can be
called with any integer parameter as a second operand, for example a + 2. It must
be mentioned that specifying a floating point value as a second operand, i.e. as a
parameter, will cause a warning from the compiler since a floating point number is
implicitly converted to an integer value.

Unfortunately, it cannot be called with an integer parameter as the first operand,
e.g. 2 + a. This is not possible because operator+() is overloaded as a member
function, so the left operand must be a RationalNumber, as mentioned earlier.

This is where overloading operator+() as a free function comes into play, as shown
in Listing 110.

1 RationalNumber operator+(RationalNumber a,RationalNumber b)
2 {
3 return a.add(b);
4 };

Listing 110: Overloading operator +() as a free function

In a free function, there is no receiver object that acts as the first operand.
Therefore, all operands must be passed as parameters. Here the RationalNumbers a
and b are passed by value. In this way, the problem of using an object as reference
and as reference to const in the same function is basically avoided. Passing the first
operand as a value has the added advantage that no further action is required since
it is modified by the call to a.add(b); in the implementation of operator+(). A free
function cannot be declared as const, because there is no receiver object.

The compiler now performs automatic type conversion if at least one of the two
operands is of type RationalNumber. If a and b are of type RationalNumber, all of the
following expressions compile and execute correctly:

• a + b

– 195 –

• a + 2
• 2 + b

Therefore, it is generally recommended here to implement the functionality of
the binary operators as normal member functions of a type. The binary
operators themselves are implemented separately as free functions that call
the corresponding member functions of the respective type. This advice applies
to all binary operators implemented for RationalNumber.

In addition, the << and >> operators for stream insertion and extraction must be
implemented as free functions, since their first operand is always a stream object.
Implementing them as member functions of a stream type would require extending
the source code of all stream classes, which is not acceptable for many reasons,
including maintenance, testing, legal issues, and source code availability.

Some further details are to be mentioned. Not all operators can be overloaded as
free functions. For example, type conversion operators – they are not explained in
this text – can be implemented only as member functions. The syntax of operators
cannot be changed. An overloaded operator has the same arity as its built-in
counterpart, for example the division operator, /, always has two operands. Also,
the precedence of an operator cannot be changed. For example, the assignment
operator, =, always has a lower priority than arithmetic operators. Also, the
associativity of an operator cannot be changed. For example, the sequence operator,
operator,(), (not explained here) is always evaluated from left to right (left
associativity), while operator=() is always evaluated from right to left (right
associativity). It is not possible to introduce new operators.

In most cases it is possible to change the return type of operators. However, this
may violate conventions and expectations. For example, if operator=() would
return void, this would prevent assignment chaining, i.e. a = b = 42; would be no
longer allowed. Therefore, operator=() should always return the receiver object of
an assignment as a non-const reference. It is possible to change the semantics of an
overloaded operator. This also violates conventions and expectations.

5.5.3. Overloading Operators for RationalNumber
As mentioned in the Make Section, the source code files in the RatNumRefSem/src
subdirectory are not reproduced in this text. Nevertheless, some changes to the
rational_number.hpp and rational_number.cpp files are presented below. They
prepare the overloading of operator>>() and operator<<().

The member function RationalNumber& RationalNumber::output() sends its
output to cout only. This must be changed so that it can send its output to any text
stream. For this purpose, a parameter of type std::ostream is passed by reference.

– 196 –

std::ostream serves as an interface for all types that are output-text streams. The
signature of the modified member function is void
RationalNumber::output(std::ostream& os) const. Since the modified member
function returns nothing, i.e. void, it can be declared as const instead as a reference
of type RationalNumber to *this. The stream object os passed as std::ostream& is
modified by the output and therefore cannot be passed as a reference to const. One
change in the implementation of RationalNumber::output(std::ostream& os)
const is that os is used consistently instead of cout. If the output is sent to cout, it
must simply be passed as a parameter, i.e. a.output(cout);. Another change is that
return *this; is no longer required since the member function returns nothing.

The situation is different with RationalNumber::input(). This member functions
interactively reads a rational number in a console window from the user. For this
very purpose, this member function is preserved as it is.

The overloaded member function RationalNumber::input(istream& is) is the
counter part of RationalNumber::output(ostream& os). Its parameter istream&
can be any input text stream. The member function reads all components of a
rational number from this input text stream, but does no validity checking. As a
consequence, any non-whitespace character can be used instead of (, /, and). Also,
no check is made to see if the value read for m_denominator is not 0. So calling this
method can put the receiver object in an invalid state! For this reason,
RationalNumber::input(istream& is) should not be called as a.input(cin); to
interactively input a RationalNumber from cin. Instead, a.input(); should be used.

The purpose of both member functions is to serialize a RationalNumber into a text
stream, and to deserialize a RationalNumber from a text stream. Therefore both
member functions should be implemented symmetrically. The serialization output
of one function must be processed by the other function as input. Various errors
related to streams can occur in both member functions. None of them are detected
or handled. Errors related to streams and their handling will be discussed later.

The member function RationalNumber::toLongDouble() has been added for
completeness and convenience. It returns a value of type long double which
approximates the receiver object of type RationalNumber as floating point value.
The implementation of this member function introduces a new operator, namely a
type cast operator. The operator call static_cast<long double>(m_numerator)
creates a new value of type long double, initialized with m_numerator of type
intmax_t. It would have been sufficient to apply the type cast to only one of the data
members of RationalNumber. This would trigger an automatic type conversion of
the other component to perform floating point division. The type cast was explicitly
applied to both components to highlight the necessary type conversions to perform
a floating point division instead of an integer division. Of course, this member
function is a candidate for implementation as a type conversion operator. The first

– 197 –

reason not to so is that the existence of such a type conversion operator would
conflict with the overloading of arithmetic operators as free functions. If both
conversion options were available, the compiler would report an error because it
could not decide which one to apply. The second reason is that type conversion
operators are not covered in this text.

Listings 111 and 112 show only excerpts from the corresponding files, focusing on
the previously introduced changes. The corresponding project is located in the
RatNumRefSemOp subdirectory.

1 // ...
2 namespace rational_number
3 {
4 // ...
5 class RationalNumber
6 {
7 public:
8 // ...
9 void output(std::ostream& os) const;

10 void input(std::istream& is);
11 [[nodiscard]] long double toLongDouble() const;
12 // ...
13 };
14 }

Listing 111: RatNumRefSemOp/rational_number.hpp (excerpt)

1 // ...
2 namespace rational_number
3 {
4 // ...
5 void RationalNumber::output(ostream& os) const
6 {
7 os << '('
8 << m_numerator
9 << '/'

10 << m_denominator
11 << ')'
12 << flush;
13 }
14
15 void RationalNumber::input(istream& is)
16 {
17 char c;
18 is >> c
19 >> m_numerator
20 >> c
21 >> m_denominator
22 >> c;
23 }
24
25 long double RationalNumber::toLongDouble() const
26 {
27 return static_cast<long double>(m_numerator) /
28 static_cast<long double>(m_denominator);
29 }
30 }

Listing 112: RatNumRefSemOp/rational_number.cpp (excerpt)

– 198 –

The operators are kept separate from RationalNumber. This makes it possible to
include them only when they are needed. However, they are also in the
rational_number namespace. Listing 113 shows the header file and Listing 114
shows the implementation file.

1 /*! \file rational_number_operators.hpp
2 *
3 * Operators related to rational numbers as free functions.
4 *
5 * \author Ulrich Eisenecker
6 * \date June 21, 2021
7 */
8
9 /*!

10 * Include guard for rational_number_operators.hpp
11 */
12 #ifndef RATIONAL_NUMBER_OPERATORS_HPP
13 #define RATIONAL_NUMBER_OPERATORS_HPP
14
15 #include "rational_number.hpp"
16
17 /*! Namespace for types and functions related to rational numbers.
18 */
19 namespace rational_number
20 {
21 /*! Adds rational numbers a and b
22 * and returns result as value.
23 */
24 [[nodiscard]] RationalNumber operator+(RationalNumber a,RationalNumber b);
25 /*! Subtracts rational number a from b
26 * and returns result as value.
27 */
28 [[nodiscard]] RationalNumber operator-(RationalNumber a,RationalNumber b);
29 /*! Multiplies rational numbers a and b
30 * and returns result as value.
31 */
32 [[nodiscard]] RationalNumber operator*(RationalNumber a,RationalNumber b);
33 /*! Divides rational number b by a
34 * and returns result as value.
35 */
36 [[nodiscard]] RationalNumber operator/(RationalNumber a,RationalNumber b);
37
38 /*! Stream-insertion operator which outputs RationalNumber to output stream.
39 */
40 std::ostream& operator<<(std::ostream& os,const RationalNumber& r);
41 /*! Stream-extraction operator which inputs RationalNumber from input stream.
42 */
43 std::istream& operator>>(std::istream& is,RationalNumber& r);
44 }
45 #endif // RATIONAL_NUMBER_OPERATORS_HPP

Listing 113: RatNumRefSemOp/rational_number_operators.hpp

1 #include <iostream>
2 using namespace std;
3 #include <numeric> // Because of gcd().
4
5 #include "rational_number.hpp"
6 #include "rational_number_operators.hpp"
7
8 namespace rational_number
9 {

10 RationalNumber operator+(RationalNumber a,RationalNumber b)
11 {
12 return a.add(b);

– 199 –

13 }
14
15 RationalNumber operator-(RationalNumber a,RationalNumber b)
16 {
17 return a.subtract(b);
18 }
19
20 RationalNumber operator*(RationalNumber a,RationalNumber b)
21 {
22 return a.multiply(b);
23 }
24
25 RationalNumber operator/(RationalNumber a,RationalNumber b)
26 {
27 return a.divide(b);
28 }
29
30 std::ostream& operator<<(std::ostream& os,const RationalNumber& r)
31 {
32 r.output(os);
33 return os;
34 }
35
36 std::istream& operator>>(std::istream& is,RationalNumber& r)
37 {
38 r.input(is);
39 return is;
40 }
41 }

Listing 114: RatNumRefSemOp/rational_number_operators.cpp

All parameters of the mathematical operators are passed by value. This is consistent
to the corresponding mathematical member functions and avoids problems with
unexpected changes of the passed parameters. Even the change of parameter
passing in the corresponding mathematical member functions back to reference to
const would be compensated this way. Consequently, the results are also returned
by value. Each mathematical operator is declared with the [[nodiscard]] attribute,
since ignoring its result would be nonsensical.

The latter is different for operator<<() and operator>>(). Both operators return
the stream passed to them as a reference to allow chained input or output.
Ultimately, the stream returned is not used for any other input or output and must
therefore be ignored. Therefore, [[nodiscard]] cannot be used here. Also, these
operators must accept and return references to streams, not references to const
streams, since any input or output modifies the corresponding stream.

In this way, the mathematical and the stream operators fully comply with the
earlier recommendation to implement the functionality of the operators as ordinary
member functions and to overload the operators as free functions calling the
corresponding member functions. Of course, this is only possible if these operators
can be overloaded as free functions. Some authors and some implementations do
not follow this recommendation. This regularly leads to the situation where
operators overloaded as free functions require access to private data members of
objects, which breaks encapsulation and information hiding. This should be

– 200 –

considered bad style. How to break encapsulation and information hiding is not
explained in this text.

The main() function (Listing 115) focuses on the use of the overloaded operators
and the recently introduced member function RationalNumber::toLongDouble(). It
also introduces so-called string streams for the first time. A string stream is a special
stream object that resides in memory rather than on a mass storage. To use string
streams the <sstream> header file must be included. The statement ostringstream
oss; declares an output string stream called oss (short for output string stream).
After the declaration, oss can be used like cout. Everything sent to oss is written to
oss’s internal string buffer and does not appear anywhere else.

The contents of the output string stream can be accessed with the member function
ostringstream::str(). This member function returns the current content of its
buffer as a new object of type std::string. This string can be used like any other
string. For example, it can be sent to cout. In main() it is used to initialize the input
string stream declared by istringstream iss(oss.str());. In this way, the
previously generated output becomes the input. Any input that can be read from
cin can also be extracted from an input string stream, here iss (short for input-
string stream). However, there is an important difference! An input string stream is
not suitable for implementing interactive user input, as RationalNumber::input()
does. This requires an additional output stream and an entity such as a user to
respond to error messages and provide new and corrected input. With the
exception of cin (in combination with cout) this restriction applies to all other input
streams.

These explanations should be enough to understand what main() does and how.
1 /*! \file main.cpp
2 *
3 * Demo application for rational numbers
4 * and corresponding operators
5 *
6 * \author Ulrich Eisenecker
7 * \date January 8, 2024 */
8
9 #include <iostream>

10 #include <sstream>
11 using namespace std;
12
13 #include "rational_number.hpp"
14 #include "rational_number_operators.hpp"
15 using namespace rational_number;
16
17 /*! Calls operators related to RationalNumber.
18 */
19 int main()
20 {
21 cout << "Please enter rational number"
22 << endl;
23 RationalNumber a { };
24 a.input();
25 RationalNumber b { 2,3 },
26 c { 5,7 },

– 201 –

27 d { 11,13 };
28 RationalNumber sum { a + b + c + d };
29 cout << a << " + " << b << " + "
30 << c << " + " << d << " = "
31 << sum
32 << endl;
33 cout << sum << " = "
34 << sum.toLongDouble()
35 << endl;
36 ostringstream oss;
37 oss << (a - b) << (b * c) << (c / d);
38 RationalNumber difference, product, quotient;
39 istringstream iss { oss.str() };
40 iss >> difference >> product >> quotient;
41 cout << a << " - " << b << " = "
42 << difference << endl
43 << b << " * " << c << " = "
44 << product << endl
45 << c << " / " << d << " = "
46 << quotient << endl;
47 }

Listing 115: RatNumRefSemOp/main.cpp

In the following it is assumed that the reader has converted the program
RationalNumberClassValueSemantics.cpp (Listing 93) into a project with its own
files and a makefile similar to the project RatNumRefSem. All necessary files should
be located in the subdirectory RatNumValSem, whose structure is parallel to
RatNumRefSem. This transformation must be complete, and each goal of the
corresponding makefile must be executed without errors and return the expected
result. Based on this project, the changes to obtain RatNumValSemOp are presented
below.

The general goal is to add the same operators as in RatNumRefSemOp to the value-
based design of RationalNumber. The resulting project should be located in a
subdirectory named RatNumValSemOp.

Ideally, the solution sought should be as close as possible to the reference-based
design. This requires some changes to RationalNumber which are presented below.

The first change concerns the member function RationalNumber::output(), to
which a reference to ostream named os is added as a parameter. The modified
implementation uses os instead of cout.

Secondly, once a RationalNumber has been created in the value-based design, it
should not be modified. This cannot be maintained if a RationalNumber is to be
entered using operator>>(). Therefore, the member function called by
operator>>() must set new values for an existing exemplar of RationalNumber. For
this purpose, RationalNumber::input(istream& is) is introduced as a member
function. It has the same implementation as the corresponding member function in
the reference-based design. Therefore, the same restrictions and caveats apply. It
should be noted that the presence of this member function violates the philosophy

– 202 –

of value-based design. But in order to integrate a value-based design of
RationalNumber into common C++ practices, this compromise must be made.

Third, the free function inputRationalNumber() is renamed to input() and moved
to RationalNumber as a static member function. Of course,
inputRationalNumber() is in the rational_number namespace and thus does not
pollute the global namespace. This change is not strictly necessary, but harmonizes
both designs and strengthens the cohesion of RationalNumber.

A static member function is declared with the keyword static, e.g. static
RationalNumber input(). static must not be repeated in a separate definition of a
member function. A static member function does not need an exemplar of its class
to call it. For this reason, this (the pointer to the receiver object) is not defined in a
static member function, since there is no receiver object. Also, a static member
function cannot be declared as const, since there is no receiver object associated
with it that may not be modified. A static member function can be thought of as a
kind of free function that resides in the quasi-namespace defined by its class. To call
it, it must be preceded with the name of its class and the scope operator, for
example, RationaNumber::input(). Since the result of calling
RationalNumber::input() should not be ignored, its declaration is preceded by the
[[nodiscard]] attribute.

A fourth change is the introduction of the member function
RationalNumber::toLongDouble() to bring it in line with the revised reference-
based design.

Listings 116 and 117 only show the differences to the RatNumValSem project, which
is assumed to have been created by the reader

1 // ...
2 namespace rational_number
3 {
4 // ...
5 class RationalNumber
6 {
7 public:
8 // ...
9 void output(std::ostream& os) const;

10 void input(std::istream& is);
11 [[nodiscard]] long double toLongDouble() const;
12 [[nodiscard]] static RationalNumber input();
13 // ...
14 };
15 }
16 #endif // RATIONAL_NUMBER_HPP

Listing 116: RatNumValSemOp/rational_number.hpp

1 // ...
2 namespace rational_number
3 {
4 // ...
5 void RationalNumber::output(ostream& os) const
6 {

– 203 –

7 os << '('
8 << m_numerator
9 << '/'

10 << m_denominator
11 << ')'
12 << flush;
13 }
14
15 void RationalNumber::input(istream& is)
16 {
17 char c;
18 is >> c
19 >> m_numerator
20 >> c
21 >> m_denominator
22 >> c;
23 }
24
25 long double RationalNumber::toLongDouble() const
26 {
27 return static_cast<long double>(m_numerator) /
28 static_cast<long double>(m_denominator);
29 }
30
31 RationalNumber RationalNumber::input()
32 {
33 intmax_t numerator { 0 },
34 denominator { 1 };
35 cout << "numerator: " << flush;
36 cin >> numerator;
37 do
38 {
39 cout << "denominator: " << flush;
40 cin >> denominator;
41 if (denominator == 0)
42 {
43 cerr << "Error, denominator may not be 0!"
44 << endl;
45 }
46 } while (denominator == 0);
47 return RationalNumber { numerator, denominator };
48 }
49 // ...
50 }
51 }

Listing 117: RatNumValSemOp/rational_number.cpp

With respect to the adapted version of RationalNumber of the value-based design,
the implementation of the desired operators differs only slightly from
RatNumRefSemOp/src/rational_number_operators.hpp and the associated
implementation file. Since there is no aliasing problem in the value-based design, all
parameters of type RationalNumber are passed as a reference to const. Since this is
the only exception, the implementation of the operators is identical.

Both implementations of main() differ only in two lines. In the reference-based
design, RationalNumber a is initialized by the standard constructor. Then, a.input()
is called to allow the user to enter new values. Listing 118 shows the corresponding
snippet. Lines 1 and 2 in Listing 118 correspond to lines 23 and 24 in the original
file.

– 204 –

1 RationalNumber a { };
2 a.input();

Listing 118: Declaring and inputting a RationalNumber (reference-based design)

In the value-based design, both lines are replaced by initializing RationalNumber a
by calling the static member function RationalNumber::input() (Listing 119). Line
1 in Listing 119 corresponds to line 23 in the original file. The line ends with a
comma because additional variables of type RationalNumber are declared in the
following lines.

1 RationalNumber a { RationalNumber::input() },

Listing 119: Declaring and inputting a RationalNumber (value-based design)

It is noteworthy that both designs, reference-based and value-based, started out
differently but became more similar as their functionality expanded. This was
mainly due to practical needs, such as avoiding aliasing problems and integrating
well with common C++ practice, rather than design philosophy.

5.6. Testing
Meanwhile, RationalNumber plus related functions and operators in both designs
comprises about 20 functions and member functions. This is a good occasion to
think again about testing. Many changes and extensions have been implemented,
and there has always been a need to trust that the changes do not break existing
code or introduce bugs. Are there ways to test this more systematically and
automatically? Fortunately, the answer is yes, as explained below.

5.6.1. Motivation for Automated Testing
Unit testing is a method of checking for errors once a unit has been changed. There
are many frameworks for unit testing. And of course, unit testing can also become
part of the build process. In this way, a unit test can be executed automatically when
a source file is changed. In addition, the execution of the build tool can be triggered
automatically by a higher-level process. This will not be explored in this text.

In programming, a unit is a piece of software with a well-defined interface and
a (possibly hidden) implementation that can be used (more or less) separately.
According to this definition, the smallest unit is a function. It has a well-defined
interface, i.e. the prototype, and an implementation that need not be available to
use the function. Moreover, the function can be called separately. Nevertheless, it
may be necessary to especially prepare the parameters for calling the function. And
of course, the function may call other functions to accomplish its task. A class can
also be considered as a unit. An assembly of cooperating classes, such as a
component or a framework, is not considered a unit because its parts are

– 205 –

more or less loosely coupled and such assemblies can usually be extended with
new parts. Therefore, unit tests are usually not suitable for testing such assemblies.

A unit test serves various purposes:

1. It checks whether a unit conforms to its specification. If this is the case, the
test is successful.

2. It checks whether the unit runs correctly for different parameter values or
combinations of parameter values. In practice, it is usually impossible to test
all parameter values and all combinations of them.

3. It checks whether the unit still runs as expected after a change in its
implementation. Sometimes previous errors are reintroduced with more
recent changes to a unit. This phenomenon is called regression of errors.
Therefore, all previous test cases should be preserved and re-executed
whenever a change is made to a unit. This is called regression testing.

Because of possible interactions between the units it may be useful to perform an
overall test of all units to check for known or new errors. This is called an
integration test.

When a unit test fails, there are of course two possible places where the error
origonates. One place is the unit under test. The other place is the unit test itself. A
unit test is a piece of software and as such is error prone like any software. The
development of a unit test requires as much attention and effort as the development
of the software under test. It may even happen that the unit test comprises more
lines of code than the software under test.

There are several methods for performing unit tests. One method is to develop
software and implement and execute unit tests at an entirely different time. This
method carries the risk that implementing unit tests may be perceived as a burden,
and executing unit tests may reveal so many errors that it takes a lot of time and
effort to detect and fix them. Of course, this is not the best method for unit testing.
Nevertheless, it is the method used here for testing RationalNumber and its
associated functions in both designs.

Another approach is to implement a unit test first and then the unit under test. This
approach, called test first, is the central idea of test-driven design. This approach
assumes that the requirements for the unit are precisely known in order to
implement the unit test. In this way, the unit test can be considered as an instance of
the formalized requirements of the unit.

Of course, there are many variations of the above methods. In general, it is
advisable to write and run a unit test close to the time when the unit is
developed. It is also advisable to start the unit tests with the basic units first
and end with the tests of more complex units. In this way, the likelihood that
more complex units will be built on well tested, simpler units increases. If a bug is

– 206 –

discovered, the search in the higher-level units is likely to be more successful. If
lower-level units have not yet been tested, the search for the cause often has to start
at lower levels, while it cannot be ruled out that the error has its origin at a higher
level.

As pointed out before, there are many frameworks for unit testing that also apply to
C++. Very well known are the Boost Test Library (Part IV. Boost Test Library: The
Unit Test Framework, n.d.) and GoogleTest (Google/Googletest, 2015/2021). However,
for testing RationalNumber and its associated operators Catch2 (Catchorg/Catch2,
2010/2021) is used as framework for unit testing. It is relatively lightweight and easy
to use, for example, by simply including a single header file. Its terminology
sometimes differs from other testing frameworks. In the following, Catch2 is
introduced as far as it is necessary for the understanding of the presented tests. Its
special features and differences to other testing frameworks will not be discussed.

To use Catch2, it should be downloaded and unzipped to a suitable directory. Then
the header file catch.hpp contained in the unzipped directory
Catch2-2.x/single_include/catch2 (or a corresponding directory in a newer version of
Catch2) should be copied and pasted into the directory containing the source files of
the project under test.

5.6.2. General Design of Tests
The units to be tested, i.e. the functions and a class, are declared in math_helper.hpp,
rational_number.hpp, and rational_number_operators.hpp. A workable approach is to
organize the tests around these header files. Each .cpp file with the _test suffix in its
name tests the units of the corresponding .hpp file, e.g. math_helper_test.cpp tests
the functions declared in math_helper.hpp.

These tests are compiled separately. In principle, they can also be executed as
individual test applications. Since all tests are to be executed at once, there is a
special file that serves as application for executing all tests. Therefore, this file is
called full_test.cpp. Listing 120 shows its contents.

1 #define CATCH_CONFIG_MAIN
2 #include "catch.hpp"
3
4 #include "math_helper_test.cpp"
5 #include "rational_number_test.cpp"
6 #include "rational_number_operators_test.cpp"

Listing 120: RatNumRefSemOp/src/full_test.cpp

The first two lines must be present to use Catch2. The definition of the
CATCH_CONFIG_MAIN macro causes Catch2 to provide a main() function that executes
the tests. The following #include directive includes the catch.hpp header file, which
contains everything needed to write and run the tests. This must be done before

– 207 –

including the files that contain the various tests. Otherwise the program will not
compile because all the macros, types and functions required to write the test cases
are not yet known.

5.6.3. Testing the Mathematical Helper Function
Listing 121 shows the tests for the sign() function declared in
RatNumRefSemOp/src/math_helper.hpp.

1 // math_helper_test.cpp by Ulrich Eisenecker, February 8, 2022
2
3 #include <limits> // Because of numeric_limits<>.
4 #include <cstdint> // Because of intmax_t.
5
6 #include "math_helper.hpp"
7
8 TEST_CASE("sign","[math_helper]")
9 {

10 using namespace std;
11 using namespace math_helper;
12 // Testing smallest values.
13 REQUIRE(sign(-1) == -1);
14 REQUIRE(sign(0) == 0);
15 REQUIRE(sign(1) == 1);
16 // Testing largest values.
17 intmax_t minValue { numeric_limits<intmax_t>::min() },
18 maxValue { numeric_limits<intmax_t>::max() };
19 REQUIRE(sign(minValue) == -1);
20 REQUIRE(sign(maxValue) == 1);
21 }

Listing 121: RatNumRefSemOp/src/math_helper_test.cpp

The <limits> header file is included because of numeric_limits<>, which is
required for testing the sign() function. The next preprocessor directive includes
the math_helper.hpp header file, which contains the prototypes of the functions to be
tested. Then the first test case is defined with the macro TEST_CASE. This macro can
take one or two arguments. The following examples always use two arguments.

The first argument is a string with the name of the test case. This name must be
unique for all test cases, because it identifies the test case. Here the test case is
called "sign". The optional second argument is also a string and contains one or
more tags. Each tag must be enclosed in square brackets, i.e. "[...]". Here the only
tag is "[math_helper]". How to use the name and the tags will be explained later.

The implementation of the test case is enclosed in curly braces { ... }. Ideally, the
test cases are written in such a way that they are isolated from each other, i.e. no
test case should depend on another test case. It should be possible to insert new
test cases, delete old ones, or to move test cases within the same file or between
files. For this reason, the namespaces std and math_helper are imported in each test
case and not before.

– 208 –

There are various strategies for testing. For example, tests with special small and
large parameter value pairs, and so-called happy path tests. A happy path test uses
arbitrary values for which the test is normally successful.

So-called assertion macros (Catch2 terminology) are used to formulate the
conditions that must hold for a successful test. The assertion macro REQUIRE() takes
a simple expression which is evaluated. The result of the evaluation is recorded. If
all assertion macros evaluate to true, the test case passes. Otherwise, the violated
assertion is reported including the value of the expression. REQUIRE(sign(-1) == -
1); calls the sign() function with parameter -1 and checks if the result is equal to -
1. All following conditions are also formulated with REQUIRE(). Additional assertion
macros are documented in (Catchorg/Catch2, 2010/2021). Assertion macros can only
handle simple expressions. If the expression is too complex to be processed by the
assertion macro, a variable must be initialized beforehand with the result of the
evaluation of the complex expression. Then, this variable can be used to formulate a
simpler expression that can be processed by the assertion macro.

The remaining tests of the sign() function use the special values 0, and 1. 0 is a
special value because the sign of 0 is defined as 0. In addition, the minimum and
maximum values are tested, which are determined platform-independently with
numeric_limits<>.

After all this has been described, the test case should be self-explanatory.

5.6.4. Testing of RationalNumber
Testing of RationalNumber is more extensive due to the larger number of member
functions to be tested. Incidentally, only public member functions are tested, since
private or protected member functions are not accessible from outside the class.
Therefore, private or protected member functions can only be tested indirectly via
extensive testing of public member functions, possibly with special parameter
values to trigger their indirect execution. Listing 122 shows all test cases for
RationalNumber.

1 // rational_number_test.cpp by Ulrich Eisenecker, June 26, 2021
2
3 #include <sstream>
4 #include "rational_number.hpp"
5
6 TEST_CASE("constructor","[rational_number]")
7 {
8 using namespace rational_number;
9 // All constructor parameters are defaulted.

10 RationalNumber r1 { };
11 REQUIRE(r1.numerator() == 0);
12 REQUIRE(r1.denominator() == 1);
13 // Last constructor parameter is defaulted.
14 RationalNumber r2 { 1 };
15 REQUIRE(r2.numerator() == 1);
16 REQUIRE(r2.denominator() == 1);

– 209 –

17 // All constructor parameters are explicitly provided.
18 RationalNumber r3 { 2,1 };
19 REQUIRE(r3.numerator() == 2);
20 REQUIRE(r3.denominator() == 1);
21 // After construction a rational number is in its canonical form.
22 RationalNumber r4 { -2 * 3 * 5, -2 * 3 * 7 };
23 REQUIRE(r4.numerator() == 5);
24 REQUIRE(r4.denominator() == 7);
25 }
26
27 TEST_CASE("arithmetic methods","[rational_number]")
28 {
29 using namespace rational_number;
30 RationalNumber a { 4,7 },
31 b { 2,7 };
32 SECTION("add")
33 {
34 a.add(b);
35 REQUIRE(a.numerator() == 6);
36 REQUIRE(a.denominator() == 7);
37 }
38 SECTION("subtract")
39 {
40 a.subtract(b);
41 REQUIRE(a.numerator() == 2);
42 REQUIRE(a.denominator() == 7);
43 }
44 SECTION("multiply")
45 {
46 a.multiply(b);
47 REQUIRE(a.numerator() == 8);
48 REQUIRE(a.denominator() == 49);
49 }
50 SECTION("divide")
51 {
52 a.divide(b);
53 REQUIRE(a.numerator() == 2);
54 REQUIRE(a.denominator() == 1);
55 }
56 }
57
58 TEST_CASE("output","[rational_number]")
59 {
60 using namespace std;
61 using namespace rational_number;
62 // String stream for serializing correct rational numbers
63 ostringstream oss { };
64 SECTION("serialize 1")
65 {
66 RationalNumber { }.output(oss);
67 REQUIRE(oss.str() == "(0/1)");
68 }
69 SECTION("serialize 2")
70 {
71 RationalNumber { 2 }.output(oss);
72 REQUIRE(oss.str() == "(2/1)");
73 }
74 SECTION("serialize 3")
75 {
76 RationalNumber { 2 * 3 * 5,3 * 5 * 7 }.output(oss);
77 REQUIRE(oss.str() == "(2/7)");
78 }
79 SECTION("serialize 4")
80 {
81 RationalNumber { 2 * 3 * 5,-3 * 5 * 7 }.output(oss);
82 REQUIRE(oss.str() == "(-2/7)");
83 }

– 210 –

84 SECTION("serialize 5")
85 {
86 RationalNumber { -2 * 3 * 5,3 * 5 * 7 }.output(oss);
87 REQUIRE(oss.str() == "(-2/7)");
88 }
89 SECTION("serialize 6")
90 {
91 RationalNumber { -2 * 3 * 5,-3 * 5 * 7 }.output(oss);
92 REQUIRE(oss.str() == "(2/7)");
93 }
94 SECTION("serialize 7")
95 {
96 RationalNumber { 2,5 }.output(oss);
97 RationalNumber { 3,-7 }.output(oss);
98 RationalNumber { -11,13 }.output(oss);
99 RationalNumber { -17,-19 }.output(oss);

100 REQUIRE(oss.str() == "(2/5)(-3/7)(-11/13)(17/19)");
101 }
102 }
103
104 TEST_CASE("input","[rational_number]")
105 {
106 using namespace std;
107 using namespace rational_number;
108 // String stream with exact and slightly varied serialized rational numbers.
109 // Partially, a robustness test.
110 // RationalNumber::input(istream&) does nit call normalize()!
111 istringstream iss
112 { "(1/2)(-1/2) (1/-2) (-1/-2) (2/ 4) (-2 / -4) (0/0)" };
113 RationalNumber r;
114 // (1/2) --> (1/2)
115 r.input(iss);
116 REQUIRE(r.numerator() == 1);
117 REQUIRE(r.denominator() == 2);
118 // (-1/2) --> (-1/2)
119 r.input(iss);
120 REQUIRE(r.numerator() == -1);
121 REQUIRE(r.denominator() == 2);
122 // (1/-2) --> (1/-2)
123 r.input(iss);
124 REQUIRE(r.numerator() == 1);
125 REQUIRE(r.denominator() == -2);
126 // (-1/-2) --> (-1/-2)
127 r.input(iss);
128 REQUIRE(r.numerator() == -1);
129 REQUIRE(r.denominator() == -2);
130 // (2/ 4) --> (2/4)
131 r.input(iss);
132 REQUIRE(r.numerator() == 2);
133 REQUIRE(r.denominator() == 4);
134 // (-2 / -4) --> (-2/-4)
135 r.input(iss);
136 REQUIRE(r.numerator() == -2);
137 REQUIRE(r.denominator() == -4);
138 // (0/0) --> (0/0)
139 r.input(iss);
140 REQUIRE(r.numerator() == 0);
141 REQUIRE(r.denominator() == 0);
142 }
143
144 TEST_CASE("toLongDouble","[rational_number]")
145 {
146 using namespace rational_number;
147 RationalNumber r { -22, -7 };
148 REQUIRE(r.toLongDouble() == Approx(3.14285));
149 }

– 211 –

Listing 122: RatNumRefSemOp/src/rational_number_test.cpp

A first difference from Listing 121 is the inclusion of the <sstream> header file. This
is necessary because this header file contains the definition of the input and output
string streams istringstream and ostringstream introduced earlier.

The first test case tests only the constructor of RationalNumber. Therefore it is called
"constructor". The tag "[rational_number]" is used for all test cases in this file.
The strategy for testing the constructor is different from that for sign(). First, it
tests whether the expected default values for its parameters are used correctly.
Since the member variables RationalNumber::m_numerator and
RationalNumber::m_denominator are private, the corresponding getter methods
are used to retrieve their values. There are three ways to call the constructor:

1. As a standard constructor without argument,
2. as a type conversion constructor with only one argument, and
3. with explicit specification of both arguments.

Finally, there is an indirect test of RationalNumber::normalize(). Since the
implementation of the constructor is available, it is known that this is the only place
where this private member function is called. Two prime number products are used
to test whether the execution of this function returns the desired result. This
concludes the test, as the constructor does no further calculations beyond calling
RationalNumber::normalize().

The test case named "arithmetic_methods" introduces a novelty, namely sections.
In a section, the resources previously defined in the test case are reused. At the
beginning of the test case "arithmectic_methods" the variables a and b are
declared as RationalNumbers and initialized accordingly. The first section is
declared with the macro SECTION() and its name "add" as a parameter. Within the
section, the variables a and b are used to perform the actual test. The next section,
tagged "multiply", again uses a and b. It is important to note that a and b are not in
the state they assumed in the previous section. Rather, a and b have the state in
which they were initialized at the beginning of the test case. This is important so
that the tests in the sections can be run independently. Consequently, any section
can be deleted or moved to any location in the test case, or a new section can be
introduced, without affecting the other sections of the test case.

By setting up the required environment for the execution of each test, the sections
help to avoid redundancy in the tests.

The "arithmetic_methods" test case only runs happy path tests. It does not contain
test data with extreme values. This makes sense at first, since the arithmetic
member functions do not contain code to detect and handle errors, such as
arithmetic underflow or overflow.

– 212 –

The test case named "output" again makes use of sections. First, it declares an
exemplar of ostringstream named oss. As explained earlier, an ostringstream is a
cout-like stream that stores its data internally in a human-readable form as a string.
Its member function ostringstream::str() provide access to this data. The
sections perform an extreme value test ("serialize 1"), a happy path test
("serialize 2"), tests of negative sign permutations ("serialize 3" to "serialize
6"), and a more complex output test ("serialize 7"). Since
RationalNumber::output() is declared as a const member function, it can also be
called for temporary objects. The statement RationalNumber { 2 }.output(oss);
first creates an unnamed temporary exemplar of RationalNumber, i.e.
RationalNumber { 2 } returns the temporary object. Second, using the dot operator,
the member function output() is called for it, i.e. temporary.output(oss);.

The next test case, "input", performs a mixture of happy path and robustness tests.
The istringstream iss is initialized with correctly serialized values of
RationalNumber, but also contains mismatches. There are syntactic errors, for
example extra whitespaces outside parentheses, extra whitespaces inside
parentheses. And there are semantic errors, for example, rational numbers with
negative denominator and the value (0/0). All these erroneous data are deserialized
as expected. So these tests show that RationalNumber::input() can handle
erroneous data. This quality of software is called robustness. Of course, some
limitations apply. A whitespace between a sign and digits cannot be processed
correctly, and a semantically invalid value such as (0/0) can lead to consequential
errors.

The last test case performs a happy path test for RationalNumber::toLongDouble().
It initializes r with -22 and -7, which yields the rational number 22/7. Calculating the
decimal value gives a number with decimal places. Since calculations with floating
point numbers have a limited range and precision, testing for equality is
inappropriate in most cases. Therefore, the comparison for equality is performed
using the Approx wrapper class. The equality operator == has been overloaded for
Approx to perform a tolerant comparison. Approx provides several customization
points, which are described in the Catch2 documentation.

5.6.5. Testing Operators For RationalNumber
Listing 123 shows the tests for the operators related to RationalNumber. They
introduce only one new feature, namely nesting of sections. Here, sections are
nested not only for resource reuse, but also for the purpose of a fine-granular test
structure.

1 // rational_number_operators_test.cpp by Ulrich Eisenecker, June 26, 2021
2
3 #include <sstream>
4 #include "rational_number.hpp"

– 213 –

5 #include "rational_number_operators.hpp"
6
7 TEST_CASE("operator","[rational_number_operators]")
8 {
9 using namespace rational_number;

10 RationalNumber a { 1,-5 },
11 b { -2, 3 };
12 SECTION("operator+")
13 {
14 SECTION("RationalNumber + RationalNumber")
15 {
16 RationalNumber r { a + b };
17 REQUIRE(r.numerator() == -13);
18 REQUIRE(r.denominator() == 15);
19 }
20 SECTION("RationalNumber + int")
21 {
22 RationalNumber r { a + 2 };
23 REQUIRE(r.numerator() == 9);
24 REQUIRE(r.denominator() == 5);
25 }
26 SECTION("int + RationalNumber")
27 {
28 RationalNumber r { 3 + b };
29 REQUIRE(r.numerator() == 7);
30 REQUIRE(r.denominator() == 3);
31 }
32 }
33 SECTION("operator-")
34 {
35 SECTION("RationalNumber - RationalNumber")
36 {
37 RationalNumber r { a - b };
38 REQUIRE(r.numerator() == 7);
39 REQUIRE(r.denominator() == 15);
40 }
41 SECTION("RationalNumber - int")
42 {
43 RationalNumber r { a - 2 };
44 REQUIRE(r.numerator() == -11);
45 REQUIRE(r.denominator() == 5);
46 }
47 SECTION("int - RationalNumber")
48 {
49 RationalNumber r { 3 - b };
50 REQUIRE(r.numerator() == 11);
51 REQUIRE(r.denominator() == 3);
52 }
53 }
54 SECTION("operator*")
55 {
56 SECTION("RationalNumber * RationalNumber")
57 {
58 RationalNumber r { a * b };
59 REQUIRE(r.numerator() == 2);
60 REQUIRE(r.denominator() == 15);
61 }
62 SECTION("RationalNumber * int")
63 {
64 RationalNumber r { a * 2 };
65 REQUIRE(r.numerator() == -2);
66 REQUIRE(r.denominator() == 5);
67 }
68 SECTION("int * RationalNumber")
69 {
70 RationalNumber r { 3 * b };
71 REQUIRE(r.numerator() == -2);

– 214 –

72 REQUIRE(r.denominator() == 1);
73 }
74 }
75 SECTION("operator/")
76 {
77 SECTION("RationalNumber / RationalNumber")
78 {
79 RationalNumber r { a / b };
80 REQUIRE(r.numerator() == 3);
81 REQUIRE(r.denominator() == 10);
82 }
83 SECTION("RationalNumber / int")
84 {
85 RationalNumber r { a / 2 };
86 REQUIRE(r.numerator() == -1);
87 REQUIRE(r.denominator() == 10);
88 }
89 SECTION("int / RationalNumber")
90 {
91 RationalNumber r { 3 / b };
92 REQUIRE(r.numerator() == -9);
93 REQUIRE(r.denominator() == 2);
94 }
95 }
96 }
97
98 TEST_CASE("operator<<","[rational_number_operators]")
99 {

100 using namespace rational_number;
101 std::ostringstream oss;
102 RationalNumber r { 24,7 };
103 oss << r;
104 REQUIRE(oss.str() == "(24/7)");
105 }
106
107 TEST_CASE("operator>>","[rational_number_operators]")
108 {
109 using namespace rational_number;
110 std::istringstream iss { "(24/7)" };
111 RationalNumber r { };
112 iss >> r;
113 REQUIRE(r.numerator() == 24);
114 REQUIRE(r.denominator() == 7);
115 }

Listing 123: RatNumRefSemOp/src/rational_number_operators_test.cpp

Since arithmetic member functions are tested separately and it is known from the
source code that arithmetic operators simply call the corresponding member
functions, the correctness of the arithmetic operators is not tested again. This
strategy is not optimal because the tests now depend on structural knowledge of the
source code. If autonomous implementations for arithmetic operators were later
provided, the correctness of their calculations would not be tested at all. Of course,
in so-called glass or white-box tests, knowledge of a unit’s implementation can help
to implement more comprehensive tests in terms of statement coverage or
execution paths. At the moment, the tests focus on one syntactic aspect, namely
appropriate type conversions. There is one test case that covers all arithmetic
operators. The top-level sections test each operator, and nested sections test calling
operators with different combinations of parameter types.

– 215 –

The first nested section tests whether the operator evaluates correctly for two
rational numbers, the second tests whether the call with one rational number and
one integral value returns the expected result, and the third test does so for one
integral value and one rational number.

Finally, there are two test cases for the output operator (stream insertion) and for
the input operator (stream extraction). Both tests are happy-path tests. Again, string
streams are used for output and input.

5.6.6. Full Test
For testing, the source files full_test.cpp, math_helpers.cpp, rational_number.cpp, and
rational_number_operators.cpp are compiled and linked to an executable file named
check. Of course, the executable test file can be named differently. Then all tests are
run by executing ./check in a terminal window. If all tests pass successfully, there is
minimal output as Figure 40 shows.
===
All tests passed (70 assertions in 9 test cases)
Figure 40: Report for successful test

But what happens if a test fails? This can be easily simulated. In
rational_numbers_operators_test.cpp, test case named "operator +", section named
"int + RationalNumber" the statement REQUIRE(r.numerator() == 7); is changed
to REQUIRE(r.numerator() == 6);. Rebuilding and executing check now produces
the output shown in Figure 41.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
check is a Catch v2.13.6 host application.
Run with -? for options

-------------------------------------------------------------------------------
operator
  operator+
  int + RationalNumber
-------------------------------------------------------------------------------
src/rational_number_operators_test.cpp:26
...............................................................................

src/rational_number_operators_test.cpp:29: FAILED:
  REQUIRE( r.numerator() == 6 )
with expansion:
  7 == 6

====================================================
===========================
test cases:  9 |  8 passed | 1 failed
assertions: 69 | 68 passed | 1 failed
Figure 41: Report for failed test

– 216 –



Catch2 now provides detailed information about the failed test. This way it is easy to
locate the failed test see what is the expected value and what is the actual value.

It  should be emphasized that a failed test  can be caused either by a  bug in the
software under test  or  by a bug in the test  itself.  Therefore,  both sites  must be
thoroughly checked for errors.

The executable test file can be called without options, as has been shown before. It
can also be called with a  variety of  command line options.  For example,  ./check
"[math_helper]" executes only tests tagged as  "[math_helper]",  ./check "arithmetic
methods" executes  only  the  "arithmetic  methods" test  case.  The  available
command line options are detailed in the Catch2 documentation.

It should be mentioned that this example gives only a small insight into testing from
a technical perspective. Testing is a separate field in software engineering. Much
more can and should be done, there are different testing strategies, and there are
many approaches to creating tests and test data. For brevity, the tests shown have
not been documented. In practice, it is not unusual to document the tests in detail as
well. It should be emphasized again that sometimes there is much more test code
than code under test.

5.6.7. Makefile And Testing
Since testing is an essential activity, it is common practice to integrate it into the
build process. Listing 124 shows a makefile that includes testing.

1 # Makefile for RatNumRefSemOp, January 17, 2023, Author: Ulrich Eisenecker
2 
3 CXX = g++
4 CXXFLAGS = -std=c++20 
5 SRCDIR = src
6 OBJDIR = obj
7 
8 # Declare "doc" and "clean" as phony
9 .PHONY: doc clean

10 
11 # Rule 1: Define target "all" with dependencies "demo" and "check"
12 all: demo check
13 
14 # Rule 2: Define target "demo" with dependency "$(OBJDIR)/demo"
15 demo: $(OBJDIR)/demo
16 
17 # Rule 3: Define target "check" with dependency "$(OBJDIR)/check"
18 check: $(OBJDIR)/check
19 
20 # Rule 4: Link "demo"
21 $(OBJDIR)/demo: $(OBJDIR)/main.o $(OBJDIR)/rational_number_operators.o \
22 $(OBJDIR)/rational_number.o $(OBJDIR)/math_helper.o
23 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/demo $(OBJDIR)/main.o \
24 $(OBJDIR)/rational_number_operators.o \
25 $(OBJDIR)/rational_number.o $(OBJDIR)/math_helper.o
26 
27 # Rule 5: Compile main.cpp
28 $(OBJDIR)/main.o: $(SRCDIR)/main.cpp$(SRCDIR)/rational_number.hpp \

– 217 –



29 $(SRCDIR)/rational_number_operators.hpp
30 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/main.o -c $(SRCDIR)/main.cpp
31 
32 # Rule 6: Compile math_helper.cpp
33 $(OBJDIR)/math_helper.o: $(SRCDIR)/math_helper.cpp \
34 $(SRCDIR)/math_helper.hpp
35 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/math_helper.o \
36 -c $(SRCDIR)/math_helper.cpp
37 
38 # Rule 7: Compile rational_number.cpp
39 $(OBJDIR)/rational_number.o: $(SRCDIR)/rational_number.cpp \
40 $(SRCDIR)/rational_number.hpp $(SRCDIR)/math_helper.hpp
41 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/rational_number.o \
42 -c $(SRCDIR)/rational_number.cpp 
43 
44 # Rule 8: Compile rational_number_operators.cpp
45 $(OBJDIR)/rational_number_operators.o: \
46 $(SRCDIR)/rational_number_operators.cpp \
47 $(SRCDIR)/rational_number_operators.hpp $(SRCDIR)/rational_number.hpp
48 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/rational_number_operators.o \
49 -c $(SRCDIR)/rational_number_operators.cpp 
50 
51 # Rule 9: Link "check" and execute it
52 $(OBJDIR)/check: $(OBJDIR)/full_test.o \
53 $(OBJDIR)/rational_number_operators.o \
54 $(OBJDIR)/rational_number.o $(OBJDIR)/math_helper.o 
55 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/check $(OBJDIR)/full_test.o \
56 $(OBJDIR)/rational_number_operators.o \
57 $(OBJDIR)/rational_number.o $(OBJDIR)/math_helper.o
58 $(OBJDIR)/check
59 
60 # Rule 10: Compile full_test.cpp
61 $(OBJDIR)/full_test.o: $(SRCDIR)/full_test.cpp \
62 $(SRCDIR)/rational_number_operators_test.cpp \
63 $(SRCDIR)/rational_number_test.cpp $(SRCDIR)/math_helper_test.cpp
64 $(CXX) $(CXXFLAGS) -o $(OBJDIR)/full_test.o \
65 -c $(SRCDIR)/full_test.cpp 
66 
67 # Rule 11: Delete all binaries and executable
68 clean:
69 rm -f $(OBJDIR)/*
70 rm -rf doc/*
71 
72 # Rule 12: Generate documentation
73 doc:
74 doxygen

Listing 124: RatNumRefSemOp/makefile

Besides the integration of tests, it uses some features that have not been introduced
yet. They are all explained below.

First,  doc and  clean are declared as phony targets.  This has the consequence that
these targets are made even if files with the same name exist. Then a new target all
is declared, which depends on  demo and  check.  Each of these targets depends on
files with the same name that may exist in the obj subdirectory. By specifying these
targets and all as the first target, there are the following variations of calling make
for this makefile:

• make – makes demo and check if needed, and runs check when freshly built.
• make all – makes demo and check (like make without options).

– 218 –



• make demo – makes only demo if required
• make check – makes only  check if  required, and  runs check if  it  is  freshly

built.
• make doc – creates the documentation.
• make clean – remove all files contained in the obj and doc subdirectories; the

content of doc and all of its subdirectories are deleted recursively.

To make the makefile easier to understand, implicit rules have been omitted, which
is unusual for makefiles in practice.

As already introduced (Section Make ), long lines have been split into several lines.
Each line that ends with \ is continued in the next line.

All rules have been documented accordingly, so their purpose should be obvious.

In  rule  12  Doxygen is  called  without  parameters.  For  this  reason  the
parameterization file was named Doxyfile. One detail must be pointed out about the
Doxyfile (Listing  125).  The  line  that starts  with  EXCLUDE is  new.  It  excludes
src/catch.hpp and  src/full_test.cpp from the documentation creation process. If this
line is not present or converted to a comment, a lot of documentation is generated
for these otherwise excluded files.  Regarding the generated documentation,  it  is
worth mentioning that the operator calls are missing from the call graph of main()
(Doxygen 1.9.1).

1 # Doxyfile for RatNumberRefSemOp for Doxygen 1.9.1
2 PROJECT_NAME           = RatNumberRefSemOp
3 OUTPUT_DIRECTORY       = doc
4 INPUT                  = src/main.cpp src
5 EXCLUDE                = src/catch.hpp src/full_test.cpp
6 GENERATE_LATEX         = NO
7 HAVE_DOT               = YES
8 CALL_GRAPH             = YES
9 CALLER_GRAPH           = YES

10 GRAPHICAL_HIERARCHY    = YES
11 DIRECTORY_GRAPH        = YES

Listing 125: RatNumRefSemOp/Doxyfile

The subdirectory  RatNumValSemOp contains  the corresponding files for  a value-
based  design  of  RationalNumber.  Since  their  equivalents  in  the  reference-based
design  have  already  been  explained  in  detail,  they  should  be  understandable
without further explanation.

– 219 –



6. Motivation for the Case Study
So  far,  both  programming  and  accompanying  or  subsequent  activities  such  as
documentation and testing have been presented. As shown in Figure 42, the focus
has been on the solution space. Concepts of an imperative programming language
and their representation in C++ as well as selected parts of C++ libraries have been
presented. The same applies to additional activities of an individual programmer
that help to ensure the understandability and maintainability of the implemented
code.

Figure 42: Focus on the solution space

Relatively  simple  applications  were  chosen  from  only  a  few  domains  to  be
implemented as programs. They were introduced in such a way that no effort had to
be made to explore and understand them. Consequently, there was also minimal
effort  for  the  mappings  from  problem  space  to  solution  space.  Either  a  useful
mapping was at hand or it was presented immediately.

Additional  emphasis  is  now  placed  on  the  problem  space  and  mapping.
Programming  is  supplemented  by  essential  preparatory  activities  such  as
requirements analysis, analysis and design. It is essential to gain knowledge of what
is  to  be  developed  and  to  have  an  idea  of  how  it  might  be  developed  before
beginning actual programming. It will become clear that this is a difficult process. In
practice, it is almost impossible – or at least not economically justifiable – to gather
comprehensive and consistent requirements in advance of programming in a single
step.  It  will  be  shown  how  to  elicit  requirements  iteratively.  For  those  readers
unfamiliar with the domain of the case study, the effort to identify the appropriate
domain-specific concepts and their characteristics becomes impressively clear. Each
resulting  program  piece  must  be  thoroughly  reviewed  to  determine  whether  it
meets the appropriate requirements, whether it is usable in practice, and it must be
documented for future maintenance and servicing activities. Most programs are so
extensive  and  complex  that  it  is  necessary  to  go  through  the  aforementioned

– 220 –

Solution space
● if, switch
● for, while,

do-while
● int, float,

std::string,
…

● Functions
● struct, class

Problem spaces
● Information

theory
● Checksum
● Rational

numbers
● ...

Mappings

● Implementing
● Documenting
● Debugging
● Testing



activities several times in approximately this order. From a practical point of view,
the task chosen for the case study is relatively small.

Nevertheless, accomplishing this task will give an intense sense of how challenging
this process is. New programming concepts are introduced during the case study.
Unlike the assumed reader of this introduction, experienced programmers have an
in-depth knowledge of a programming language and its libraries. They also know
what resources are available to obtain more information and how to effectively
search  those  resources  for  the  information  they  need.  The  assumed  reader,  of
course, lacks this knowledge and experience. For this reason, some coarse-grained
heuristics  are  presented  on  how to  come  up  with  ideas  for  useful  concepts.  In
addition,  the  required  concepts  are  once  again  presented  in  an  authoritative
manner.  Therefore,  the  emphasis  on  mapping  is  not  as  strong  as  it  could  be.
Debugging,  testing,  and  documentation  are  almost  neglected  in  the  case  study,
which of course is not representative of programming practice.

6.1. A Rule-based Inference Engine
Currently,  artificial intelligence (AI for short) is experiencing a boom. Today, AI is
primarily about machine learning (ML for short). A few decades ago, there was also
a boom in AI. While ML was still in its infancy, the focus was on capturing human
knowledge  piecemeal  and  in  a  form  closer  to  natural  language.  This  involved
finding and using a form of knowledge representation that could be easily created
and understood by humans and yet automatically processed by computers, namely
expert systems.

An expert system attempts to mimic the reasoning of a human expert in a particular
domain,  such as diagnosing a disease,  determining the species  of  an animal,  or
assessing  risk  on  the  road.  A  rule-based  expert  system uses  rules to  represent
knowledge and an  inference engine to process those rules. An  expert system shell
consists of an inference engine and the ability to load and process an arbitrary,
adequately  formatted  knowledge  base.  A  knowledge  base  bundles  rules  and
questions related to a specific domain.

The subject of this case study is the analysis and re-implementation of such a rule-
based inference engine.

ESIE™ version 1.1 is a simple rule-based inference engine released as shareware by
Lightwave Consultants in 1985.  ESIE™ is  an acronym for  Expert  System Inference
Engine.

At the time of writing, there are two sources for ESIE™, namely (The Programmer’s
Corner  «ESIE.ZIP»  Miscellaneous  Language  Source  Code,  n.d.) and  (Package:
Areas/Expert/Systems/Esie/,  n.d.).  The  first  source  seems  to  require  registration

– 221 –



before downloading, the second source offers  different archives, of which the  .zip
archive seems to be broken, but the .tar archive works fine.

The archives from both sources differ in terms of the files they contain. Both contain
an  ESIE.COM executable file.  Although both executables differ in  when they were
created, they identify themselves as version 1.1 in the intro screen after startup. The
first  source  contains  the  text  files  MANUAL and  READ.ME.  The  second  source
contains the corresponding but different files manual.esi and readme.esi. The latter
files are newer and have a different size. The text file TUTOR is included only in the
first source and identifies the author as  Edward Reasor,  who owns and operates
Lightwave Consultants.  Although TUTOR is a relevant document, it seems safer to
use the second source  to download  ESIE™ if  needed. It  must be emphasized that
downloading information from the Internet is always at one′s own risk and can be
potentially harmful.

ESIE™ is mentioned in several publications, for example in  (Hecker, 2009),  (Yohe,
1987) and  (Sciences,  1993).  Apparently,  it  had  been  used  for  exploratory  and
didactic purposes.

To run ESIE™ on a modern computer, an emulator for the MS-DOS operating system
is required, e.g. DOSBox (DOSBox, an X86 Emulator with DOS, n.d.). The installation
and configuration of DOSBox differs for Microsoft Windows, Linux, and macOS and
would go beyond the scope of this text. Nevertheless, one important aspect should
be mentioned.  To use a German keyboard layout, the line  "keyb de453" should be
added to the initialization file of DOSBox.

The goal of this case study is to reimplement a rule-based expert system shell so that
it  processes the same knowledge bases as  ESIE™,  produces identical results,  and
exhibits the same observable behavior. The ESIE™ source code is not available for
this  task.  The only sources of  information are  ESIE™ itself,  the knowledge bases
contained in  the  archives,  newly  created  knowledge  bases,  and  the  companion
documents.

The new expert system shell is to be called EC, which can be interpreted as ESIE™
cover version. However, it is a completely independent software system.

Re-engineering  and  re-implementing  an  old  software  system,  also  called  legacy
system,  is  a  typical  software  development task.  Often  the  documentation  and
expertise on the legacy system is no longer available, and the source code may also
be missing, but the legacy system is still relevant  to its users and sometimes even
critical  to business. Fortunately,  ESIE™ is not mission critical, but all other aspects
apply to the task of its re-implementation.

This case study also focuses on requirements analysis, analysis, design, and their
relationship to programming. Therefore, implementation will be completed once a
program is available that behaves  exactly – or at least almost exactly – as  ESIE™.

– 222 –



This  program  will not  meet  the  criteria  for  good  design.  It  will  be neither
documented nor subjected to thorough unit testing. Its main purpose is to develop
an idea of how ESIE™ might work and to translate that idea into an executable. One
of many ways for re-engineering an existing application  is presented in detail.  In
addition,  some new programming concepts  are introduced, and last but not least,
basic knowledge about rule-based expert systems will be presented.

In fact, the re-implementation of ESIE™ was performed in a very iterative way. The
various software engineering activities were performed multiple times, for the data
to be represented, for loading a knowledge base, for testing the correctness of the
loading and the appropriateness of the chosen data structures (not shown in detail
below), for user interaction, and for processing a knowledge base. To present all of
this in actual order and iteration would require a lot of text and could potentially be
confusing.  For  didactic  reasons,  the  order  of  activities  has  been  carefully
streamlined and the number of iterations reduced – all from the perspective of an
omniscient author. Nevertheless, the impression  can sometimes arise that there is
an arbitrary switching between activities and topics. This gives a taste of what can
happen in the practice of software development. It would  create a false image to
present everything in a final and polished state.

6.2. Requirements Analysis
There are several sources for requirements elicitation, e.g. domain experts, domain
specific  documents,  legacy  systems,  and  legacy  system  documents.  The  re-
engineering and re-implementation of ESIE™ in this text will focus on the latter two
sources. First, documents related to ESIE™ are presented and evaluated. Second, a
sample  knowledge  base  is  created that can be processed by  ESIE™.  Later,  other
knowledge bases  will  be  created to  further  explore  the  requirements  related to
ESIE™.  This  text does  not  accurately reflect  how  to  become  familiar  with  the
requirements.  In  practice,  it  is  not  mandatory  to  read  the  system  documents
completely first and then try out the system. Usually,  one will read some text first
and then try  out  the system,  or  the  other  way around.  This  is repeated until  a
sufficient understanding of how to use the system is achieved. However, the goal is
not to become an expert in the use of ESIE™, but to understand this legacy system to
the point where it can be re-implemented.  Therefore, great care must be taken in
the requirements analysis.

In the following text, domain-specific terms relevant to the analysis are written in
highlighted font. Terms related to design or implementation are set in code font, as
is the case with source programs.

– 223 –



6.2.1. System Documentation
In  the  following,  manual.esi (MAN for  short),  contained  in  (Package:
Areas/Expert/Systems/Esie/, n.d.) is used for information.  manual.esi has about the
same  size  as  MANUAL,  contained  in  (The  Programmer’s  Corner  «ESIE.ZIP»
Miscellaneous Language Source Code, n.d.). TUTOR (TUT for short), also included in
(The Programmer’s Corner «ESIE.ZIP» Miscellaneous Language Source Code, n.d.), is
more  extensive and adds some details  not  included in  manual.esi.  Nevertheless,
there is considerable overlap between MAN and TUT. How to dsign and write down
a knowledge base is a focus of TUT.

The first activity for collecting possible requirements is to read MAN and copy text
phrases that seem to be candidates for requirements. Ideally, such a phrase only
addresses one simple requirement. Then, the phrase should be characterized by a
few keywords. Simple tools for creating such a requirements document are a word
processor or spreadsheet. Of course, there are also professional tools. However, they
are not presented here.

In Table  21,  these phrases  and keywords are recorded in two columns.  The left
column contains quotations from the documents that are not explicitly formatted as
such for simplicity. The citations contain additional text formatted in  italics with
blue background. Square brackets [ ], enclose additional text for clarification, which
may include the ellipsis,  ..., to indicate omitted text. To find the exact  position of a
text phrase, one can search for in the original document.

Quotations from MAN Keywords

Any word processor will do, but the word processor needs to be capable of producing
flat or ASCII, files.

Knowledge Base – Format

In whatever editor you choose,  the margins and spacing can be set to whatever you
choose. ESIE reads from the file in free format. That means that your file can look pretty
strange if you want it to. As long as the syntax is in the correct order the file will load
properly. If it does not then ESIE will report an error in the knowledge base and return
you to DOS.

Knowledge Base – Format

When you have at least the above two files where you want them, simply type in ESIE at
the DOS prompt. The ESIE introductory screen will appear.

Use – Start

At the top of the introductory screen is a prompt asking you to supply the file name
where the knowledge base may be found. You may enter any name you please. If the file
exists, then ESIE will attempt to load that file.

Use – Start

If no loading errors are found, then ESIE will take you to the top level. Use – Start

If there are errors in loading the KB, then ESIE will list where it found the errors and
return you to DOS.

Use – Start

If the file does not exist, then you have the option of trying again. Just hitting the 'Y' or
the 'N' key will answer this prompt.

Use – Start

You will know when you have reached the top level by the distinctive ESIE prompt. It
looks like this: "==>".

Use – Consult

At the top level you have four different command options: TRACE ON, TRACE OFF, GO,
and EXIT. While you can have as many leading and trailing blanks as you wish, ESIE is
not  quite  free  form on  the  command line;  you  must  have  one  and only  one  space

Use – Consult

– 224 –



Quotations from MAN Keywords

between the TRACE and YES/NO options. Other than that, ESIE is free form.

Importantly, ESIE is case insensitive. Caps look just the same as smalls to ESIE. This is
also true in the KB and in end user responses. ESIE is case insensitive everywhere.

Format – Use

When you first enter the top level, trace is off by default. Use – Consult

You can turn trace on using the TRACE ON command. Use – Consult

Turning  trace  on will  tell  the system to  constantly keep you informed of  what  it  is
currently looking for and what information it has learned.

Use – Consult

You can turn the trace back off again by entering the TRACE OFF command. Use – Consult

The GO command is the command to tell ESIE to begin a consultation with the KB that
was loaded.

Use – Consult

ESIE will continue with this consultation until it is complete or until an error is found in
the logic of the KB.

Use – Consult

You may not turn trace on or off once a consultation has begun. If the user types in
TRACE ON, TRACE OFF, GO or EXIT in response to a question, then ESIE will treat that as
the response to the question.

Use – Consult

Once ESIE has completed the consultation, or found an error in the logic of the KB, it will
return you to the top level for additional commands.

Use – Consult

Use the EXIT command in order to leave ESIE and return to DOS. Use – Terminate

After  a  consultation  is  complete,  you  have  the  option  of  entering  ANY  of  the  four
commands, including GO, again.

Use – Consult

There are five types of rules in ESIE. Rules – Types

Below is the syntax for the five types of rules in ESIE:
[legalanswers is/are <variable> [<variable>]... *] goal is <variable> [if <variable> is/are
<value>  [and <variable>  is/are  <value>]… then  <variable> is/are  <value>]… [question
<variable> is/are "<text>"]...
answer is/are "<text>" <variable>
[...]
In the syntax above the '/' means "either or" you must choose between 'is' and 'are' for
that one spot.
[...]
The symbol "..." in the rule definition above means "repeat as often as desired", and that
is exactly what you may do, as long as you are not exceeding some maximum.
The brackets mean that the item is optional.

Rules – Syntax – Format

BLANKS are the only recognized delimiter in ESIE. There must be at least one blank
between any two tokens in the KB. End-of-line and end-of-file are treated like blanks.

Format – Syntax

In ESIE a <variable> or <value> can be ANY string of non-blank characters, including
special and extended ASCII characters, up to 40 characters long. Blanks may not appear
in a <variable> or <value>.

Format – Rules – Syntax

ESIE will treat small and capital letters identically. Format – Syntax

You  will  note  that  LEGALANSWERS,  IF,  and QUESTION  type  rules  may not  even  be
included in the KB, although a KB without rules is not going to be of much use.

Rules – Syntax – Format

In a fully-structured KB, in fact, the order of the rules is totally inconsequential, any rule
or any rule type may come before or after any other rule or rule type.

Knowledge Base – Syntax

In some KBs the structure is not complete, so it may be wise to place some rules before
others.

Knowledge Base – Syntax

The <text> parts of the above rule types may be any of the 256 characters of the extended
ASCII  character  set  except  for  the  quotation  mark.  The  quotation  mark  terminates
<text>. Spaces are allowed in <text>, but double quotation marks – to indicate a single –
are not.

Format – Rules – Syntax

<text> may be up to 80 characters long Format – Rules – Syntax

– 225 –



Quotations from MAN Keywords

<text>  [...] may  include  end-of-line  characters,  page  feeds,  or  whatever  you  wish  to
improve the appearance of your output.

Format – Rules – Syntax

The LEGALANSWERS rule is used to constrict what the end user of your KB can use as
responses.

Format – Rules – Syntax

If LEGALANSWERS is omitted, then anything the end user types in is a valid response. Format – Rules – Syntax

The splat, (*), is used to terminate the LEGALANSWERS rule. Although the splat, by itself,
is a totally valid <variable> or <value> we did not think many of you would want that as
a valid response, so we use it as a terminator.

Format – Rules – Syntax

The  GOAL  rule  specifies  what  you  are  looking  for,  that  is,  it  determines  what  this
consultation and KB are all about.

Format – Rules – Syntax

The IF rules and the QUESTION rules are used by ESIE to try and find out what the
<variable> of the GOAL should be set to.

Rules – Processing

[IF  rules]:  the  <variable>  right  after  the  IF  is  evaluated,  and the  evaluated  value  is
compared to the <value> if the two are identical, then any AND parts are compared the
same way.

Rules – Processing

[IF  rules]:  Comparison  stops  on  any  rule  where  an  IF  part  or  an  AND  part  do  not
compare identically.

Rules – Processing

[IF  rules]:  if  they  [the  comparisons] are  all  identical  then the rule  succeeds  and the
<variable> immediately after the THEN is set to the last <value> specified in the rule.

Rules – Processing

The QUESTION rules are evoked by ESIE when it has gone through the entire KB and can
find no IF rule that satisfies what it is currently looking for. It then checks to see if it has
a question that it can ask the end user so that it may determine what a <variable> should
be.

Rules – Processing

The <text> part of the question is displayed and whatever the end user types in is what
<variable> is set to, if the response is legal.

Rules – Processing

If LEGALANSWERS has been specified, then the response is checked to see if it is one of
legal ones.

Rules – Processing

If  it  is  not  a  legal  response,  then  ESIE  will  list  the  possible  responses,  and ask  the
question  again.  This  will  continue  until  the  end  user  has  selected  one  of  the  legal
answers.

Rules – Processing

If  it  is  legal,  then  the  <variable>  specified in  the  QUESTION  rule  will  be  set  to  the
response.

Rules – Processing

If LEGALANSWERS has not been specified, then whatever the user types in is legal. Rules – Processing

The ANSWER rule is used only when ESIE is done. After ESIE has found the <variable> in
the goal statement he will display the <text> in the answer statement followed by the
<value> evaluated from the <variable> in the ANSWER rule. You will note that you do
not have to display the same <variable> as in the GOAL statement, but that you will often
want to.

Rules – Processing

Up to 50 <variables> for LEGALANSWERS. Knowledge Base – Limits

1 and only 1 GOAL. Knowledge Base – Limits

Up to 400 IF rule lines. Knowledge Base – Limits

Up to 100 QUESTION rules. Knowledge Base – Limits

1 and only 1 ANSWER. Knowledge Base – Limits

An IF rule line is a <variable> <value> pair. For example:
   if age is under.10
   then type.person is child
has two rule lines, while:
   if age is over.18
   and status is alive
   then type.person is living.adult

Knowledge Base – Syntax – Limits

– 226 –



Quotations from MAN Keywords

has three.

One thing that I can tell you about rule positioning. When you have a KB that is not fully
structured,  rule  positioning  can  be  important.  You  need  only  worry  about  rule
positioning if the <variables> in the conclusions are identical, and the comparators are
similar. [...] In general, you only need to worry about rule placement in the IF category,
when the <variables> in the conclusion are identical, and the comparators are similar.

Knowledge Base – Clarification

After ESIE has loaded the KB into internal structures, and the GO command has been
issued, ESIE then pushes the GOAL onto a stack.

Rules – Processing

The stack contains items to be searched for, currently looking for the one at the top of the
stack.

Processing – Internals

Then ESIE looks through the IF rules for a conclusion that matches the current stack. Processing – Internals

When one is found then ESIE looks through the comparators, one at a time, until one is
found to be not equal to its value, or they are all found to be equal.

Rules – Processing

ESIE checks each comparator by pushing it on the stack and continuing in this fashion. Processing – Internals

When ESIE can not find an IF rule in the KB with a conclusion identical to what is on the
stack then ESIE turns to the QUESTIONs and LEGALANSWERS to get information from
the end user.

Rules – Processing

Often ESIE does not need to push anything on the stack as the comparator already has a
value and it is equal to the value specified in the KB. In this case the rule succeeds and
the conclusion <variable> is set to the <value>.

Processing – Internals

In this way ESIE continues to get information and pop search items off the stack until it
learns what the GOAL variable is, or until ESIE has searched the entire KB and found
nothing that determines what the GOAL <variable> is.

Processing – Internals

[If ESIE found nothing, it] reports an error in the knowledge base and returns you to top
level.

Processing – Internals

[If  ESIE has determined the GOAL variable,  it]  ESIE reports  the ANSWER <text>  and
<variable> and then returns you to top level.

Processing – Rules

Quotation From TUT

A fully  structured KB indicates that there is a  terminating leaf  on every path of  the
decision tree. In a fully structured KB it is impossible for the rules in the KB to be mixed
up or out of order - there is one and only one path to every single goal in the KB.

Knowledge Base – Clarification

Table 21: Requirement candidates extracted from MAN and TUT

Table 21 has more than 70 rows. Their order reflects the order of occurrence of the
quotations in MAN. The only exception is the last row, which is an excerpt from TUT.
The rows may contain related phrases or duplicates. This suggests creating a new
table that does not contain duplicates and groups the phrases semantically. When
creating this new table, the focus is on converting the phrases into requirements. In
some cases,  this  means consistently changing the vocabulary, because MAN uses
terms for which there are more appropriate terms today. In addition, a requirement
should address only one topic, it should be relevant to implementation, and when
implemented,  it  should  be  easy  to  test  it.  As phrases  are  condensed  into
requirements,  the  new  table  must  provide  an  indication  for  a  requirement’s
position  in a document.  Therefore,  both the document and the pages where the
information can be found are indicated in the rightmost column.

– 227 –



Keywords  are  analyzed  and  reformulated  into  topics  that  are  grouped  in  a
semantically meaningful order.

A  look  at  the  keywords  shows  some  overlaps.  For  example,  Knowledge  Base  –
Format,  Knowledge Base  – Syntax,  Rules  – Syntax  – IF,  etc. are all  about  Syntax.
Therefore,  Syntax seems to be a suitable top-level topic. Keywords such as  Use  –
Start, Use – Consult, and Use – Terminate suggest User Interface as another top-level
topic. Finally, Processing – Internals occurs frequently. Therefore, Processing might
be also a well-suited top-level topic.

Before identifying subtopics, a meaningful ordering of the top-level topics should be
developed.  Without  having  implemented  the  internal  representation  of  a
knowledge base and being able to load it into memory, it does not make sense to
implement  processing  of  its  content  or  user  interactions  via  the  user  interface.
Therefore, everything related to Syntax is first described in the requirements table.
After loading a knowledge base, its processing requires user interaction. Therefore,
everything related to  User Interface is  in the second group of requirements.  The
requirements related to Processing are the last group in the requirements table.

Now  for  the  subtopics.  What  could  be  considered  a  valid  strategy  to  find  and
organize subtopics of Syntax? For this purpose, it may be useful to choose an order
from the general to the specific, or from the whole to its parts. This results in the
subtopics  General,  Knowledge  Base,  GOAL,  ANSWER,  LEGALANSWERS,  IF,  and
QUESTION in exactly this order.

Subtopics relevant to User Interface are Start and Top Level. Text phrases described
with the keywords  Use  – Consulting have been integrated into  Top Level or into a
subtopic of Processing. The keyword Terminate has been deleted because no further
user interaction is required after entering EXIT in the Top Level.

The subtopics Start,  Load Knowledge Base,  Top Level, and Consult were chosen for
Processing.  The resulting categories should to some extent reflect the qualities of
modularization,  i.e. the items in a (sub)category should be more cohesive,  while
categories should be less coupled  with each other. In retrospect, a more thorough
analysis might could have lead to a more appropriate category system and even to a
better formulation  of  requirements.  In  practice,  however,  resources  are  always
limited. Thus, if too much effort is put into requirement analysis, there will not be
enough resources  left  for  implementation  and  testing.  Therefore,  the  available
resources  must be reasonably  allocated to the various necessary activities. To do
this successfully, requires  a lot of thought and experience.  Therefore, for the  time
being, no  further effort  is  put  into  preparing  the requirements.  Later  in  the
development process,  it  will  be necessary to  deal  with the requirement analysis
again.

– 228 –



The left column of Table  22 contains an  ID as a unique reference for the specific
requirement. The ID consists of three numbers separated by dots. The first number
indicates  the  topic,  the  second  number  the  subtopic  and  the  third  number  the
specific requirement. The third number is not strictly consecutive, but is assigned in
increments of  5.  This  allows  requirements  found  later  to  be  inserted  in  an
appropriate place in the table. The second column indicates the Topic and the third
column the  Subtopic.  The  fourth  column  contains a  concise  Description of  the
requirement.  This can  be  either  a  citation or  a  summary restatement.  The  last
column contains the Source and exact location within the source.

– 229 –



ID Topic Subtopic Description Source
1.1.0 Syntax General The program is not case sensitive. MAN, p. 13
1.1.5 Syntax General • <variable> means the name of a variable

• <value> means the value of a variable
• <text> means a text
• ... (the ellipsis) means that the item to its left can be re-

peated any number of times
• [ ] ( a pair of brackets) enclose an optional item
• / (slash) separates alternatives

MAN, pp. 14

1.2.0 Syntax Knowledge Base The knowledge base is a flat ASCII file. MAN, p. 9
1.2.5 Syntax Knowledge Base The formatting of the knowledge base (margins, spacing) is

irrelevant as long as the syntax is correct.
MAN, p. 10

1.2.10 Syntax Knowledge Base In  a  fully  structured  knowledge  base,  each path  of  the
decision tree has a terminating leaf.

TUT, p. 13

1.2.15 Syntax Knowledge Base In a fully structured knowledge base, the order of rules is
irrelevant.

MAN,  pp.  15,
p. 18

1.2.20 Syntax Knowledge Base If the knowledge base is not fully structured, IF rules with
identical  conclusions  and  identical  but  additional
conditions must precede those with fewer conditions.

MAN,  pp.  15,
p. 18

1.2.25 Syntax Knowledge Base Blanks (spaces)  are the only valid delimiters.  End-of-line
and end-of-file are treated as blanks.

MAN, p. 14

1.2.30 Syntax Knowledge Base Legal  characters  for  variable  names  and  values  are  all
non-blank  characters,  including  special  and  extended
ASCII characters.
• Lowercase letters are treated as uppercase letters

MAN, p. 14f

1.2.35 Syntax Knowledge Base The maximum number of characters in a variable name or
value is 40.

MAN, p. 14

1.2.40 Syntax Knowledge Base A <text> part is enclosed in quotes "" and can contain any
of the 255 characters of the extended ASCII character set
except  the  quote character.  There  is  no  way to  insert a
quotation mark in <text>.

MAN, p. 15

1.2.45 Syntax Knowledge Base A <text> part may be up to 80 characters long. MAN, p. 15f
1.2.50 Syntax Knowledge Base There  are  five  types  of  rules:  GOAL,  ANSWER,

LEGALANSWERS, IF, and QUESTION.
MAN, p. 14

1.3.0 Syntax GOAL • goal is <variable>
• GOAL must be contained exactly once
• The GOAL rule specifies the goal.  Processing→
• The rules and questions are used to find the <value> for

the <variable> of the GOAL  Processing→

MAN, pp. 14 –
17

1.4.0 Syntax ANSWER • answer is/are "<text>" <variable>
• ANSWER must be contained exactly once

MAN,  pp.  14f,
17

1.5.0 Syntax LEGALANSWERS • [legalanswers is/are <variable> [variable] ... * ] [This must
be  an  error  in  MAN.  LEGALANSWERS  specifies  legal
answers, i.e. <value>s, but not <variable>s.]

• LEGALANSWERS can be included at most once
• * (splat, star) terminates the LEGALANSWERS rule; thus,

it cannot be used as a legal response
• LEGALANSWERS  restricts  possible  user  input;  if  set,

checks, whether a user’s response to a question is legal
 Processing→

• If  LEGALANSWERS is  omitted,  the user  can enter  any
text as an answer to a question.  Processing→

MAN, pp. 15ff

1.5.5 Syntax LEGALANSWERS LEGALANSWERS  can have  up  to  50  <variables>.  [See
comment in → 1.5.0]

MAN, p. 17

1.6.0 Syntax IF • [if <variable> is/are <value>
     [and <variable> is/are <value>]...
     then <variable> is/are <value>]...

• A knowledge base may contain zero IF rules

MAN, p. 14

1.6.5 Syntax IF • Each condition  <variable> is/are <value> counts as one
rule line

• The conclusion  then <variable> is/are <value> counts as
one rule line

MAN, p. 17

– 230 –



1.6.10 Syntax IF There can be up to 400 rule lines. MAN, p. 17
1.7.0 Syntax QUESTION • [question <variable> is/are "<text>"]...

• A knowledge base may contain zero QUESTION rules
MAN, p. 14

1.7.5 Syntax QUESTION A knowledge base can contain up to 100 QUESTION rules. MAN, p. 17
2.1.0 User

Interface
Start After startup, the program asks for the name of a file that

contains a knowledge base.  Processing→
MAN, p. 10

2.1.5 User
Interface

Start If a file with the given name does not exist, the program
offers to try again with Y and N as possible answers.
• If the user presses N, the program exits.
• If  the  user  presses  Y,  the  program asks  again  for  the

name  of  a  file  containing  a  knowledge  base.  
 Processing→

MAN, p. 12

2.1.10 User
Interface

Start If a file with the specified name exists, the program tries to
load it.  Processing→

MAN, p. 12

2.1.15 User
Interface

Start If a syntax error is found in the knowledge base or if an
error occurs while loading the knowledge base, the error is
reported and the program is terminated.  Processing→

MAN,  pp.  10,
12

2.1.20 User
Interface

Start After successfully loading a knowledge base, the program
enters the top level.  Processing→

MAN, p. 12

2.2.0 User
Interface

Top Level ==> is the prompt of the top level. MAN, p. 13

2.2.5 User
Interface

Top Level Valid commands in the top level are:
• TRACE ON
• TRACE OFF
• GO
• EXIT
User input is not case sensitive.

MAN, p. 13

2.2.10 User
Interface

Top Level TRACE ON and TRACE OFF must be entered with exactly
one space between TRACE and one of the options ON or
OFF.

MAN, p. 13

2.2.15 User  Inter-
ace

Top Level When the top level is entered, the trace is switched off by
default.

MAN, p. 13

2.2.20 User
Interface

Top Level TRACE ON turns trace on.
• When trace is on, the program informs what it is looking

for and what oz has learned  Processing→

MAN, p. 13

2.2.25 User
Interface

Top Level TRACE OFF switches the trace to off. MAN, p. 13

2.2.30 User  Inter-
face

Top Level EXIT terminates the program. MAN, p. 13

2.2.35 User
Interface

Top Level GO starts a consultation.
• After starting a consultation, it is no longer possible to

enter top-level commands; only responses to QUESTIONs
can be entered  Processing→

MAN, p. 13

2.2.40 User
Interface

Top Level After finishing a consultation or after reporting an error in
the knowledge base that occurred during the consultation,
the program returns to top level.
All top level commands can be used again.

MAN, p. 13

3.1.0 Processing Start The  user  is  asked for  the name of  a  file  containing  the
knowledge base.
• If  a  file  with  the  specified name  does  not  exist,  the

program offers to try again or to quit.
• If a file with the specified name exists, the program tries

to load the knowledge base.  User Interface→

MAN, p. 12

3.2.0 Processing Load  Knowledge
Base

If an error occurs  while loading the knowledge base, the
error  is  reported  and  the  program  terminates.   User→
Interface

MAN,  pp.  10,
12

3.2.5 Processing Load  Knowledge
Base

If the knowledge base  is loaded successfully, the program
switches to the top level.  User Interface→

MAN, p. 12

3.3.0 Processing Top Level Valid commands at the top level are:
• TRACE ON
• TRACE OFF
• GO
• EXIT

MAN, p. 13

– 231 –



The input is not case sensitive. Trace is initially switched
off. TRACE ON and TRACE  OFF switch between trace on
and trace off. EXIT terminates the program and GO starts a
consultation.  User Interface→

3.3.5 Processing Consult A consultation continues until it is completed or an error is
found in the knowledge base logic.

MAN, p. 13

3.3.10 Processing Consult The program manages a stack.
• This stack contains items to be searched [The stack items

are actually names of variables  that do not have a value
yet.]

• The program is currently  searching for the item that is
on top of the stack.

MAN, p. 22

3.3.15 Processing Consult At the very beginning of the consultation, the <variable> of
GOAL is pushed onto the stack. Then the processing of the
knowledge base begins.

MAN, p. 22

3.3.20 Processing Consult The GOAL <variable> is the first item on the stack. MAN, p. 22
3.3.25 Processing Consult • The  GOAL  rule  specifies  the  goal  of  the  consultation

process.
• The IF rules and QUESTION rules are used to find the

<value> on which to set the <variable> of the goal.

MAN, p. 16

3.3.30 Processing Consult As  soon  as  the  GOAL  <variable>  is  set,  the  consultation
ends, and the program switches to the top level.

MAN, p. 16

3.3.35 Processing Consult Processing continues until the GOAL <variable> has been
set or the entire knowledge base has been searched and
nothing has been found to determine the <value> of  the
GOAL <variable>.

MAN, p. 22

3.3.40 Processing Consult If the GOAL <variable>  was set, the program displays the
<text>  of  the  ANSWER  rule  followed  by  the  ANSWER
<variable>.
• GOAL <variable> and ANSWER <variable> need not to be

identical, but usually should be.
• After that the program returns to the top level

MAN,  pp.  17,
22

3.3.45 Processing Consult if the  <value>  of  the  GOAL  <variable>  cannot  be
determined,  the  program  reports  an  error  in  the
knowledge base and returns to the top level.

MAN, p. 22

3.3.50 Processing Consult When processing the knowledge base, the program looks
for IF rules  whose conclusion matches the  current stack.
[Obviously, this phrase means the "current top of the stack".
Also,  the conclusion  of  an IF rule matches  the top  of  the
stack if the variable names of the conclusion and the top of
the stack are the same.]

MAN,  pp.  16,
22

3.3.55 Processing Consult When a IF rule is found with a matching conclusion, its
conditions  [MAN  uses  the  term  "comparison"  instead  of
"condition". Here the term "condition" is preferred because it
is more general and more often used.] are checked until one
condition is not equal to its value or they are all equal.

MAN, p. 22

3.3.60 Processing Consult Checking  a  condition  means  that the  <value>  of  the
condition <variable> is compared with the <value> of the
condition. If both values are equal, the condition is TRUE,
otherwise it is FALSE.

MAN, p. 16

3.3.65 Processing Consult • If a condition is TRUE, the next condition – if  any – is
evaluated

• If a condition is FALSE, the checking the conditions of a
rule is aborted

MAN,  pp.  16,
22

3.3.70 Processing Consult If all conditions are TRUE, nothing is pushed to the stack,
and  the  conclusion  <variable>  is  set  to  the  conclusion
<value>. The corresponding <variable> is popped from the
stack.

MAN,  pp.  16,
22

3.3.75 Processing Consult If  the  program  does  not find  no  IF  rule  where  the
conclusion <variable> bis equal to the <variable> currently
searched for,  it  searches  the  QUESTION  rules  for  a
QUESTION  where a <variable>  is equal to the <variable>
searched for.

MAN,  pp.  16,
22

– 232 –



3.3.80 Processing Consult If no QUESTION rule  is found that sets the <value> of the
searched <variable>, the program reports an error in the
knowledge base and returns to the top level.

MAN, p. 22

3.3.85 Processing Consult If  a  QUESTION  rule  is  found  to  set  the  <value>  of  the
searched <variable>, the QUESTION <text> is displayed to
the user and the user is asked to answer the question.
• Answering  the  question  depends  on  whether

LEGALANSWERS rule is present or not. After answering
the  question,  the  QUESTION  <variable>  is  set  to  the
user’s input.

MAN, pp. 16f

3.3.90 Processing Consult If  the LEGALANSWERS rule is not present,  the user  can
make any input for an answer.
• Lowercase letters in the input are treated like uppercase

letters

MAN, p. 17

3.3.95 Processing Consult If  the  LEGALANSWERS  rule  is  present,  the  user’s  input
must  be  a  legal  answer,  i.e. one  of  the  <variable>s  [As
pmentioned earlier, LEGALANSWERS specifies <value>s, but
not <variable>s. Here, the erroneous term <variable> is used
only for consistency.] specified in the LEGALANSWERS rule.
• If the user’s input is not legal, the program displays all

<variable>s  of  LEGALANSWERS and prompts  the  user
again for input.

MAN, p. 17

Table 22: Consolidated and structured requirements

Clarifications and corrections are enclosed in square brackets [ ] and formatted in
italics with blue background. The right arrow, , indicates a cross-reference → within
the table.

In professional software development, tools can provide various ways to organize
requirements and ways to identify them.

6.2.2. Use of the Legacy System
To  promote understanding of  ESIE™,  a  knowledge base  is created from scratch,
which can then be loaded and consulted in ESIE™.

In  the  previous  section  it  was  said  that  a  fully  structured  knowledge  base
corresponds  to  a  binary  decision  tree  where  all  paths  end  in  a  final  leaf.  In
computer science, there are many knowledge domains that are organized in this
way. In the implementation of the cover version of ESIE™, the container templates
of the Standard Template Library (abbr. STL) of the C++ standard library are used. A
container allows elements of the same type to be stored and managed according to
different constraints and requirements.  For  this  reason,  the  example knowledge
base  is created  to  select the  most  appropriate  container from  the  available
unordered or adaptive containers. (“The C++ Standard Template Library (STL),” 2015)
provides a concise overview with two flow charts for container selection. Figure 43
shows a decision tree for selecting between unordered or adaptive containers based
on the  corresponding  flowchart  shown in  (“The C++  Standard  Template  Library
(STL),” 2015).

– 233 –



Figure 43: Adaptive and unordered containers of the C++ STL

The decision tree diagram consists of nodes of different types and links. Normally it
is read from top to bottom. Here, for layout reasons, the diagram had to be rotated
90 ° counterclockwise. It is therefore to be read from left to right. A diamond-shaped
node stands for a decision or a question. Since it is a binary tree, there is one link
for the decision no and one link for the decision or answer yes. A terminal node, also
called a leaf, is indicated by a rectangle containing the proposed STL container.

This decision tree can be easily converted into a textual knowledge base for ESIE™.
The  text  file  containing the  knowledge  base  is named  UN_AD_CN.KB
(UNordered_ADaptive_CoNtainers.KnowledgeBase).  The  restriction  to  a  file  name
with  a  maximum  of  eight  characters  is  due  to  the  limitations  of  MS-DOS.  The
extension of the file name is optional and may be a maximum of three characters.
Now to the content of the knowledge base.

Obviously, the goal is to determine the container (Listing 126).
1 goal is container

Listing 126: GOAL rule from UN_AD_CN.KB

Legal answers are limited to yes and no (Listing 127).
2 legalanswers are yes no *

Listing 127: LEGALANSWERS rule from UN_AD_CN.KB

– 234 –

Is order
important?

Allow
duplicates?

Last in,
first out?

First in,
first out?

Map key to
value?

Map key to
value?

unordered_multimap

unordered_multiset

unordered_map

unordered_set

stack

queue

priority_queue

no

yes

yes

yes

no

no

no

yes

yes

yes

no

no

Unordered containers

Adaptive containers

Is order
important?

Allow
duplicates?

Last in,
first out?

First in,
first out?

Map key to
value?

Map key to
value?

unordered_multiset

unordered_multimap

unordered_set

unordered_map

stack

priority_queue

queue

no

yes

yes

yes

no

no

yes

no

no

no

yes

yes

Unordered containers

Adaptive containers



After determining the container, the  ANSWER rule is executed (Listing  128).  Since
the user is only interested in the goal variable, the value of the goal, i.e. container,
is output. The associated string clarifies that the automatic recommendation should
be used with caution, as the knowledge base may be incorrect or incomplete.

3 answer is
4 "The STL container matching your needs is probably a(n) "
5 container

Listing 128: ANSWER rule from UN_AD_CN.KB

Then,  all  decision nodes  are coded  as  questions.  Listing  129 shows an example
question.

6 question order.is.important
7 is "Is order important?"

Listing 129: Exemplary QUESTION rule from UN_AD_CN.KB

In total, there are five questions. This is completely consistent with the six diamonds
in the decision tree, since one diamond occurs twice.

The rules simply follow all paths and combine all decisions on the path  up to the
leaf with logical And. In its action part, each rule assigns the inferred value to the
variable container. Listing 130 shows an example.

8 if order.is.important is no
9 and duplicates.are.allowed is no

10 and map.key.to.value is yes
11 then container is unordered_map

Listing 130: Exemplary IF rule from UN_AD_CN.KB

There are seven rules in total, which corresponds to the number of seven possible
values for the goal variable.

Listing 131 shows the complete knowledge base.
1 goal is container 
2 
3 legalanswers are yes no * 
4 
5 answer is 
6 "The STL container matching your needs is probably a(n) " 
7 container 
8 
9 question order.is.important 

10 is "Is order important?" 
11 
12 question duplicates.are.allowed 
13 is "Are duplicates allowed?" 
14 
15 question map.key.to.value 
16 is "Do you want to map a key to a value?" 
17 
18 question last.in.first.out 
19 is "Is the element added last the first to be taken out?" 
20 
21 question first.in.first.out 
22 is "Is the element added first the first to be taken out?" 

– 235 –



23 
24 if order.is.important is no
25 and duplicates.are.allowed is no
26 and map.key.to.value is no
27 then container is unordered.set
28 
29 if order.is.important is no
30 and duplicates.are.allowed is no
31 and map.key.to.value is yes
32 then container is unordered.map
33 
34 if order.is.important is no
35 and duplicates.are.allowed is yes
36 and map.key.to.value is no
37 then container is unordered.multiset
38 
39 if order.is.important is no
40 and duplicates.are.allowed is yes
41 and map.key.to.value is yes
42 then container is unordered.multimap
43 
44 if order.is.important is yes
45 and last.in.first.out is no
46 and first.in.first.out is no
47 then container is priority.queue
48 
49 if order.is.important is yes
50 and last.in.first.out is no
51 and first.in.first.out is yes
52 then container is queue
53 
54 if order.is.important is yes
55 and last.in.first.out is yes
56 then container is stack

Listing 131: Complete UN_AD_CN.KB knowledge base

After  manually  entering  the  text  of  the  knowledge  base  into  a  file,  it  is  highly
recommended to enter the  TRACE ON command in the top level after loading the
knowledge  base.  This  helps  to  identify  misspelled  variable  names,  which  are  a
common cause of failed analyses. A complete test of the knowledge base requires as
many  analyses  as  there  are  leaves  in  the  decision  tree,  of  course  with  the
corresponding decisions for the nodes of each path.

6.3. Analysis Model
After an initial iteration of requirement analysis, the creation of an analysis model
is  the  logical  follow-up  activity.  The  analysis  model  maps  the  requirements  to
essential concepts and their responsibilities. Usually this is visualized with a  UML
class  diagram.  The  Unified  Modeling  Language (UML for  short)  is  the  de  facto
standard in object-oriented software development  and comprises  many diagram
types  for  different  purposes.  In  the  following,  only  the  class  diagram  is  used.
Required notation elements are introduced as needed.

The purpose of an analysis model is to provide a sufficient functional view of the
system,  its  structure  and  behavior.  Once  some  of  these  basics  are  in  place,  an

– 236 –



appropriate design can be considered. In practice, there will be  several iterations
between  requirement  analysis,  analysis  modeling,  design  modeling,
implementation, and testing. In the following, only the structure is  discussed, and
small implementation pieces serve as partial design models.

The central concept of the analysis model is the KnowledgeBase. It is modeled as a
class. A class is like an ADT with some additional properties. It is symbolized by a
rectangle  with  three  compartments.  The  upper  compartment  contains  the  class
name, the middle one contains the attributes (they correspond to member data in C+
+) and the lower one contains the methods (they correspond to member functions in
C++). A knowledge base consists of rules of five different types. Each rule type is
represented  as  a  separate  class,  namely  LegalAnswers (corresponding  to  the
LEGALANSWERS  rule),  Question (corresponding  to  the  QUESTION  rule),  Rule
(corresponding to the IF rule), Answer (corresponding to the ANSWER rule) and Goal
(corresponding to the  GOAL rule). The chosen class names differ from the names
used in MAN. Obviously, all these concepts were called rules because they occur in a
knowledge  base.  But  as  will  become  clear  later,  they  do  not  have  so  much  in
common that they could all be grouped under the term rule.

The knowledge base and each rule class are connected by a so-called  aggregation
relationship, or aggregation for short. The significance of an aggregation is that the
aggregating object needs the aggregated object to function. When the aggregating
object terminates, its aggregated object also terminates, unless the aggregated object
is removed first to preserve it. A small unfilled diamond attached to the aggregating
object  indicates  aggregation.  On  the  side  of  the  aggregated  object,  the  so-called
cardinality is indicated. It tells how many aggregated objects can or must participate
in  the  aggregation.  Common  values  are  0..1,  which  means  that  at  most  one
aggregated object is allowed, 1, which means that exactly one aggregated object is
required, *, which means that any number of aggregated objects is allowed, and 1..*,
which means that at least one aggregated object or any number of them is allowed.
In addition, the exact cardinality can be specified with a lower limit and an upper
limit, e.g. 0..100, which means that there can be no aggregated object and up to 100
aggregated objects.  Aggregation applies to objects,  but is represented at the class
level.

Figure  44 shows a class diagram with the KnowledgeBase class  and its aggregated
classes.

– 237 –



Figure 44: UML class diagram of the KnowledgeBase analysis model

In the following, all numbers mentioned in connection with requirements refer to
Table 22.

First, a closer look at the  KnowledgeBase class will be taken. Its only attribute is
stack.  The  stack  is  mentioned  for  the  first  time  in  requirement  3.3.10.  The
requirement states that the stack is managed by the program and is essential for
processing  the  content  of  the  knowledge  base.  Therefore,  it  has  been moved to
KnowledgeBase for the time being.

Loading is mentioned for the first time in requirement 2.1.15. Obviously, loading a
knowledge  base  is  a  task  best  assigned  as  a  method  named  load() to  the
KnowledgeBase.  Especially when loading or  processing a knowledge base,  errors
can occur. Therefore, reportError() becomes a method of KnowledgeBase. Processing
knowledge seems to be an obvious task of KnowledgeBase. Requirements 3.3.15 and
3.3.20 state that the target  is  the first  element pushed onto the stack.  The main
purpose of the program is to assign a value to the variable of the goal. Once this is

– 238 –

KnowledgeBase

stack

load()
reportError()
prove()

LegalAnswers

values

isValid()

Answer

text
variable

Rule

conditions
conclusion

matches()
check()

Question

variable
text

Goal

variable1

1

0..1

0..100

0..?



done, the knowledge base  consultation is  finished. This is why the corresponding
method is called prove(). It tries to prove that there is a value that can be bound to
the goal variable. At the moment there is no evidence for adding more methods or
attributes to the KnowledgeBase class in the analysis model.

The Goal class is mentioned first in requirement 1.3.0. Its only attribute is the name
of a variable, and it must occur exactly once in a knowledge base. Therefore, it has
cardinality 1. Goal is a sparse class, but it plays an essential role in knowledge base
processing.

The Answer class appears for the first time in requirement 1.4.0. It has the attributes
text and  variable.  A  knowledge base must  have exactly  one answer,  denoted by
cardinality 1. Answer is also a very simple class.

The LegalAnswers class is explained in detail in requirement 1.5.0.  KnowledgeBase
may or may not aggregate an exemplar of LegalAnswers as indicated by cardinality
0..1. According to MAN,  LegalAnswers manages up to 50 variables. This statement
does not appear to be correct,  as the values managed by  LegalAnswers limit the
values  entered  by  the  user  in  response  to  a  question.  LegalAnswers therefore
contains up to 50 values. No lower limit is specified. A value is a simple string and as
such is  not  represented as a class  in the analysis  model.  When  LegalAnswers is
present, it checks whether an answer given by the user is valid. This task is assigned
to the isValid() method.

The Rule class represents the IF Rule whose syntax is described by the requirements
1.6.0, 1.6.5 and 1.6.10. It consists of conditions and a conclusion. Since conditions and
conclusion are  not  modeled as separate  classes,  further  details  are not  specified
until design or implementation. Requirements 3.3.50 and 3.3.55 mention that a rule
matches a variable on the stack if its conclusion uses that variable. Therefore, the
matches() method is present. If a rule matches a variable, then all its conditions are
checked,  which  is  described  in  requirements  3.3.55  and  following.  The  method
check() serves this purpose. The cardinality of Rule is specified as 0...?. Requirement
1.6.0  implicitly  states  that  a  knowledge  base  can  contain  no  rules  at  all.  This
explains the lower limit of 0. Requirement 1.6.10 states that a knowledge base may
contain  a  maximum  of  400  rule  lines.  The  definition  of  rule  lines  is  found  in
requirement 1.6.5, so there is no clear upper bound on the rules aggregated in a
knowledge base. For this reason, the upper limit is indicated by a question mark.
This issue must be resolved during design or implementation.

The syntax of  the  Question class is  described  in requirements  1.7.0  and 1.7.5.  A
knowledge  base  can  aggregate up  to  100  questions.  Question has  the  attributes
variable and text. Methods are not currently displayed.

– 239 –



6.4. Design Model
Based on the analysis model of the system structure, the next step is to consider
options  for  implementation in  terms of  classes,  attributes  and  the  relationships
between classes. This part is called Data. In some cases, it is advisable to focus on
the behavior first, i.e. classes and methods. However, a knowledge base is primarily
data-driven, and its data is processed in a uniform manner.

After designing the structure, the methods for loading an existing knowledge base
are designed. This part is called  Loading. The last step is the design of processing.
This part is called Processing.

The aforementioned activities transform the analysis model into a design model,
which is then implemented.

6.4.1. Data
KnowledgeBase is the central class of the program. It contains the goal, the answer,
the rules, the questions as well as the legal answers together. In the analysis model,
Goal is modeled as its own class. Its only data member is a variable, which can be
thought of as a  C++ string. This  data member does not change, and  Goal has no
specific behavior or responsibilities. For this reason, it is not  designed as a class.
Instead, it becomes a data member of KnowledgeBase with the name m_goal of type
std::string.

The  Answer class of the analysis model has the attributes  text and  variable. Both
attributes can best be thought of as C++ strings. Nevertheless, they are semantically
coupled. This might suggest an implementation as a class. However, the C++ library
provides a struct template std::pair<> as a viable alternative. Templates can best
be thought of as forms for classes and functions (template variables are not
considered here). They must either be explicitly instantiated with types (class
or  struct  templates)  or they  deduce the types from the arguments passed to
them (function templates).

To indicate that a name refers to a template,  an empty pair of angle brackets is
appended to the name. This has no syntactic meaning. It is merely a convention to
inform the human reader that the name refers to a template.

pair<> is  a  struct template  instantiated  with  two  types,  for  example
pair<std::string,int>. The result is  a  struct with a public data  member named
first of type  std::string and a public data  member named  second of type  int.
Since  text and  variable are  both  of  type  std::string,  the  corresponding  data
member is defined by KnowledgeBase as pair<string,string> m_answer;. The only
drawback is that the names of the parts no longer have any functional meaning.

– 240 –



That is, m_answer.first means Answer::text (analysis model), and m_answer.second
means  Answer::variable (analysis  model).  So  care  must  be  taken  not  to  confuse
m_answer.first and m_answer.second. This way two classes of the analysis model
disappear in the design.

This  is  different  for  the  LegalAnswers class.  It  must  manage  up  to  50  values
representing legal answers. A single value can again be thought of as a C++ string.
Another aspect is that  LegalAnswers may or may not be present (its cardinality is
0..1).  If  LegalAnswers is not present, the user can type anything in response to a
question.  Otherwise,  a  check  is  made  to  see  if  the  user's  answer  is  known  by
LegalAnswers. Thus, two sequential checks take place. First, a KnowledgeBase would
need to check if an exemplar of LegalAnswers exists. If so, it must check to see if the
user entered a legal answer. Obviously, checking for the presence of a LegalAnswers
exemplar can be considered a task of the  KnowledgeBase. But checking whether a
string  is  a  legal  answer  is  a  primary responsibility  of  LegalAnswers.  Splitting  a
responsibility  among  multiple  classes  is  not  a  good  idea,  as  it  compromises
modularization (cohesion is  compromised and coupling may increase).  However,
managing legal answers directly in the KnowledgeBase class would increase its size
and  complexity.  Another  alternative  is  to  transfer  responsibility  entirely  to
LegalAnswers.  In this  case,  LegalAnswers will  always exist  as a data member in
KnowledgeBase.  LegalAnswers will then know with certainty whether or not legal
answers have been defined in the knowledge base and decide accordingly. For now,
it  is  assumed  that  a  LegalAnswers class  will  be  designed  for  these  purposes.
Consequently,  LegalAnswers m_legalAnswers; will be added as a data member to
KnowledgeBase.

Rule is a more complicated class. It consists of  conditions and a  conclusion.  Each
elementary condition and conclusion corresponds to a  rule  line. A KnowledgeBase
can  contain up  to  a  flexible  limit  of  400  rule  lines.  To  manage  these  rules,  a
container is needed that can store a flexible number of rules.  The  C++ Standard
Template Library offers a variety of container templates for different purposes. At
the moment, the decision for one of them is postponed. Instead, it is assumed that a
Rules class,  yet  to  be  defined,  will  serve  as  a  container  for  rules  and  their
management. This results in a new data member being added to the KnowledgeBase
class,  namely  Rules m_rules;.  This is  the first time a new class is added in the
design  that  was  not  yet  present  in  the  analysis  model.  Basically,  this  class
implements the aggregation relationship from KnowledgeBase to Rule. The design of
Rule is also deferred. When resuming the design of Rule, the Rule::matches() and
Rule::check() methods are considered.

The Question class is similar to the Rule class. It is less complex, but there can be no
questions or up to 100 questions in a knowledge base. Obviously, a container is also
needed to manage questions. This decision about the use of a particular container is
again  postponed  by  introducing a  yet  to  be  defined  Questions class,  which  is

– 241 –



responsible for  managing questions  in a  knowledge base.  Consequently,  another
member  is  added  to  the  KnowledgeBase class,  namely  Questions m_questions;.
Again, a new class appears in the design that was not present in the analysis model.

So much for the aggregations. The analysis model shows stack as an attribute of
KnowledgeBase. It is needed for processing. Therefore, further discussion of stack is
deferred to the design and implementation of processing.

Another problem has not been addressed yet. The Goal, Answer, Question and Rule
classes refer to variables by their names.  A  variable can be thought of as a  pair
consisting of a name and a value. If the value is not set or is empty, the variable can
be assumed to be defined but not initialized. The value of a variable can be defined,
for example, by a Question or by the conclusion of a Rule. The value of a variable can
also be queried, for example, by an Answer or by the conditions of a Rule. Although
no class Variable or a class for managing variables is part of the analysis model, it is
clear  that  variables  must  be  managed  by  an  entity  to  be  called  Variables.
Otherwise, the knowledge base cannot be processed. For this reason, the member
Variables m_variables; is added to the KnowledgeBase class.

6.4.1.1. Digression
One could argue that the path from requirements to analysis to design is arbitrary.
There are two main reasons for this objection.

The  first  lies  in  the  question  of  which  requirement  is  mapped  to  which
programming  concept.  This  depends  largely  on  the  programming  concepts
available. In this  text, programming concepts have been introduced mostly  on the
fly to solve small programming problems. This text is not a systematic introduction
to  programming concepts.  Therefore,  the  selection of  a  particular  programming
concept for a particular requirement is based on the knowledge and experience of
the author of this text. Software engineering is not a subject of the laws of nature,
but of the human mind. Therefore, this text serves as a kind of example or model of
how to develop programs. At the moment, the chosen concepts for analysis, design
and implementation are ADT and object-oriented programming.

The second source is the progressive acquisition of knowledge and understanding
while performing a software development task. In addition to the importance of
experience,  software  development  is  a  highly  creative  activity.  In  software
development,  there  are  many decisions  that  lead  to  feedback.  All  programming
concepts,  methods, and tools are guidelines that help evaluate decisions and roll
back when an error is detected. Visualizing ideas with diagrams, expressing models
in  code,  compiling  and  running  that  code,  testing,  all  support  this  process  of
knowledge acquisition, making corrections, and perfecting until the desired system
is available and meets its specification. This text reflects at least part of this creative

– 242 –



process and attempts to provide the means necessary to understand and reproduce
it.  Today,  tools  based  on  generative  artificial  intelligence  can  process  natural
language specifications and respond with code that can be saved as a text file and
compiled. However, there is no guarantee that this code will compile without errors
and produce  the  desired result.  This  code still  needs  to  be reviewed by human
programmers, and even if tests and documentation are also generated by artificial
intelligence, their validation by humans is essential. To claim that software can be
developed more systematically from requirements to implemented system would
not be honest.

6.4.1.2. KnowledgeBase
In the first iteration of the design, many decisions were made for classes that impact
the KnowledgeBase class. For this reason, Figure 45 shows a UML class diagram that
summarizes  all  recent  changes  to  the  KnowledgeBase class  from  the  data
perspective.

Figure 45: KnowledgeBase class from the data perspective

In UML, the name of the attribute comes first. It can be followed by a colon and the
type of the attribute. This syntax reverses the order of the C++ syntax for declaring
data members in a class.

6.4.1.3. LegalAnswers
In the next step, the LegalAnswers class is designed. It manages up to 50 values, i.e.
C++ strings. Assuming that legal answers are unique and that a container can store
them in any order, std::set<> would be a suitable container template. How can this
assumption be checked? Obviously, this is an issue of the design step Loading yet to
come.  In  fact,  this  problem was  only  solved  once  the  author  had  implemented
loading. After that, the choice of set<> had to be revised. To streamline the process a
bit and not have to revise the decision later, it is clarified now. For this purpose,
another  small  program  for  gaining  insight  is  developed  and  a  new  feature  of
operating systems is introduced.

– 243 –

KnowledgeBase
m_goal : string
m_answer : pair<string,string>
m_legalAnswers: LegalAnswers
m_rules : Rules
m_questions : Questions
m_variables : Variables



The program shown in Listing  132 creates a syntactically correct knowledge base
with 0 rules and 0 questions. There are 51 values for LEGALANSWERS, all of which
are the same. After compiling the program, its output must be redirected to a text
file with a name valid for MS-DOS. Assuming the program was compiled to gen_kb,
it must be executed as follows:

./gen_kb > LA51SAME.KB

The  chevron,  >,  redirects  the  standard  output,  here  the  output  in  the  console
window, to the file with the following name, here LA51SAME.KB. This file name is
exactly 8 characters long and has an extension of two characters in length. This is
within the limits for a file name under MS-DOS.

1 // 51SameLegalAnswers.cpp by Ulrich Eisenecker, July 27, 2021
2 
3 #include <iostream>
4 using namespace std;
5 
6 int main()
7 {
8    cout << "goal is something" << endl << endl;
9 

10    cout << "legalanswers are ";
11    for (auto i { 1 }; i <= 51; ++i)
12    {
13       cout << "same ";
14    }
15    cout << "*" << endl << endl;
16 
17    cout << "answer is \"The answer is \" something" << endl << endl;
18 
19    // no rules
20    // no questions
21 }

Listing 132: ec/51SameLegalAnswers.cpp

When loading this knowledge base, ESIE™ issues the following error messages and
terminates:

Too many legalanswers encountered in the LEGALANSWERS rule.

Apparently, ESIE™ does not check for duplicate values and stores each value.

This suggests that the upper limit specified in requirement 1.5.5 should be tested.
For this purpose, LA51SAME.KB is loaded into a plain text editor, one occurrence of
same is deleted, and the resulting file is saved under the name LA50SAME.KB. ESIE™
loads this knowledge base without any problems.

This  triggers the  idea  of  testing  the  lower  bound  of  LEGALANSWERS.  Again,
LA51SAME.KB is loaded into a plain text editor. All but one occurrence of  same is
deleted. The resulting knowledge base is saved as LA1.KB (Listing 133).

1 goal is something
2 
3 legalanswers are same *

– 244 –



4 
5 answer is "The answer is " something
6 
7 question something is "Please, enter a value for something "

Listing 133: ec/LA1.KB

ESIE™ loads this knowledge base without complaining. After starting a consultation
with GO at the top level, the question is asked. The only valid answer the user can
enter is same. This behavior is not useful.

The final test is to create a knowledge base called  LA0.KB. Here  LEGALANSWERS
has no value, it terminates immediately with the asterisk, * (Listing 134).

1 goal is something
2 
3 legalanswers are *
4 
5 answer is "The answer is " something
6 
7 question something is "Please, enter a value for something "

Listing 134: ec/LA0.KB

ESIE™ loads this  knowledge base without any problems.  In the consultation, the
question is asked, but the user cannot give a valid answer. The consequence is that
ESIE™ starts an endless loop in which the user is constantly prompted, Please enter
a value for something.  It  is not possible to exit the program normally. It must be
interrupted by pressing the  Ctrl and  C keys simultaneously, i.e.  Ctrl-C. This aborts
the program and returns control to the console window. This behavior is definitely
not useful.

It is highly advisable to record these findings as additional requirements (Table 23).
Now  it  becomes  clear  why  the  last  number  in  the  numbering  scheme  for
requirements was increased in steps of five.

ID Topic Subtopic Description Source
1.5.7 Syntax LEGALANSWERS LEGALANSWERS may have 0 or 1 <value>s,  although this

is not meaningful.
ESIE™,
LA0.KB,
LA1.KB

1.5.8 Syntax LEGALANSWERS All  <value>s  for  LEGALANSWERS  are  stored without
checking for duplicates.

ESIE™,
LA50SAME.KB

2.1.16 User
Interface

Start If <value>s of LEGALANSWERS exceeds the maximum, the
error message " Too many legalanswers encountered in the
LEGALANSWERS rule." is issued..  Syntax→

ESIE™,
LA51SAME.KB

Table 23: Further requirements for LEGALANSWERS

Normally,  Table  23 would  have to  be  integrated  into  Table  22 to  create  a  new
document with the consolidated requirements, which is not shown here.

The  question  of  which  container  template  to  use  for  storing  the  values  for
LEGALANSWERS has yet to be answered. This will be done now. To follow up on the
arguments,  http://cppreference.com and  http://www.cplusplus.com are  excellent
sources. It must be pointed out again that the websites are recommended without

– 245 –

http://www.cplusplus.com/
http://cppreference.com/


guarantee. Caution is always advised when surfing the Internet,  especially when
downloading documents or programs.

As already indicated, std::set<> is not an appropriate choice. If the same element
is  inserted  multiple  times  into  a  set<>,  e.g.  set<string>  values;
values.insert("same"); values.insert("same"); it  subsequently  contains  only
one element "same". This is due to the property of a mathematical set, the archetype
for set<>, which allows an element to occur only once. Unlike a mathematical set,
set<> stores its elements in an internal order. As a result, the order in which the
elements of a set<> are accessed is usually different from the order in which they
were inserted. Of course, if the behavior of  ESIE™ is not to be mimicked exactly,
set<> would be a good choice as a container template for storing LEGALANSWERS
values.

To emulate the behavior of ESIE™, the std::vector<> container template is a better
choice. A  vector<> is a collection of elements that are ordered externally. That is,
the elements in a  vector<> are arranged in the order in which the programmer
adds them to the  vector<>. This  ordering is preserved as long as no modifying
algorithm is applied to the vector<>, such as sorting. Methods for adding elements
are

• vector<>::push_back() – the element is added to the end of the vector, and
• vector<>::insert() – the first argument specifies an iterator and the second

argument the element to be inserted before the iterator; elements to the right
of the iterator are moved one position to the right.

vector<> does  not  care  about  duplicate  elements.  So  the  only  attribute of
LegalAnswers is  vector<string>  m_answers;.  If  a  class  consists  of  only  one
attribute,  it  is  questionable whether it  should be a class at  all.  According to the
previous discussion, this is different for  LegalAnswers,  since important behaviors,
i.e. methods, are added later. Figure 46 shows the – currently – simple class diagram.

Figure 46: LegalAnswers class from the data perspective

6.4.1.4. Questions
Now  it is discussed  which  container  template  is  suitable  for  managing  the
individual  questions  in  the  Questions class.  According  to  requirement  1.7.0,  a
question associates the name of a variable with a corresponding text. This suggests

– 246 –

LegalAnswers

m_answers : vector<string>



using the name of the variable as a key to access the text of the question. For this
purpose,  std::map<> is  an  optimal  container  template.  A  map<> does  not  allow
duplicate keys and manages its key-value pairs in an internal order. The experience
gained with  LEGALANSWERS advises  to  create  a  special  knowledge base to  test
whether or not questions with duplicate variable names are allowed by ESIE™.

The  program  shown  in  Listing  135 creates  a  valid  knowledge  base  with  101
questions that all have the same variable name.

1 // 101SameQuestions.cpp by Ulrich Eisenecker, July 28, 2021
2 
3 #include <iostream>
4 using namespace std;
5 
6 int main()
7 {
8    cout << "goal is something" << endl << endl;
9 

10    // no legalanswers
11    // no rules
12 
13 
14    for (auto i { 1 }; i <= 101; ++i)
15    {
16       cout << "question same_variable" 
17            <<  " is \"text" << i << "\"" 
18            << endl << endl;
19    }
20 
21    cout << "answer is \"The answer is \" something" << endl << endl;
22 }

Listing 135: ec/101SameQuestions.cpp

After the program is compiled into gen_kb, it is executed as follows:

./gen_kb > 101SQ.KB

When loading this knowledge base,  ESIE™ gives the following error message and
terminates:

There are too many questions in the Knowledge Base for me.

After deleting a question and saving the knowledge base as 100SQ.KB, ESIE™ loads it
without complaint. If a syntactically valid knowledge base is created with multiple
questions for the same variable,  ESIE™ will always ask the first question for that
variable that occurs in the knowledge base. All other questions for that variable are
ignored.

Thus,  to  accurately mimic the  behavior  of  ESIE™,  it  is  not  possible  to  use
std::map<>. As in the case of LegalAnswers, a  std::vector<> is used to store each
question. But there is a problem. A question consists of two components, namely the
name of the variable and a text, but a vector<> can only manage single elements.
Therefore, the pair<> template is used to group the components of a question. Thus,
the  declaration  vector<pair<string,string>> m_questions; is  added  as  a  data

– 247 –



member  to the  Questions class.  Methods  for  loading  a  knowledge  base  and
processing it will be added later. Figure 47 shows the corresponding class diagram.

Figure 47: Questions class from the data perspective

These findings are also recorded as additional requirements (Table 24).
ID Topic Subtopic Description Source
1.7.6 Syntax QUESTION All QUESTIONs are recorded without checking if there are

multiple questions for the same variable.
ESIE™,
100SQ.KB

1.7.7 Syntax QUESTION If there are multiple QUESTIONs for the same variable, all
questions  are  asked  in  the  order  they  appear  in  the
knowledge base; each time, a question is asked, it can be
answered differently.

ESIE™,
KB  not
included

2.1.17 User
Interface

Start If the number of QUESTIONs exceeds the maximum, the
error  message  "  There  are  too  many  questions  in  the
Knowledge Base for me." is output.  Syntax→

ESIE™,
101SQ.KB

Table 24: Further requirements for QUESTION

6.4.1.5. Rule
Previously, it was decided that KnowledgeBase has a container for managing rules as
a data member and to implement Rule as its own class. Before selecting a suitable
container template, the Rule class is first designed.

A  Rule consists of two parts. The first part consists of one or more  conditions (in
MAN  they  are  called  comparisons)  and  its  second  part  is  the  conclusion.  Each
condition and each conclusion count as one rule line (requirement 1.6.5). A single
condition consists of the name of a variable and a value. Both parts belong closely
together. Therefore they are represented as a pair<string,string>. So far, there is
no  requirement specifying the order in which the conditions of a rule are stored.
The  knowledge  base  shown  in  Listing  136 helps  clarify  the order  in  which
conditions are stored in a rule.

1 goal is something
2 
3 legalanswers are yes no *
4 
5 answer is "The answer is " something
6 
7 if a is yes
8 and b is yes
9 then something is ab

10 
11 question a is "a is "
12 
13 question b is "b is "

– 248 –

Questions

m_questions : vector<pair<string,string>>



Listing 136: ec/ORDERCND.KB

If this knowledge base is loaded and a consultation is started, the question for a is
asked first and then the question for b is asked. If the rule is changed as shown in
Listing 137, the question about b is asked first and then the question about a.

1 if b is yes
2 and a is yes
3 then something is ab

Listing 137: Rule of ec/ORDERCND.KB with reverse order of conditions

This is not a proof, but a clear indication that the conditions are stored in the order
in which they normally appear in the knowledge base.

The next question is whether  ESIE™ checks for duplicate conditions. To find out,
ec/ORDERCND.KB is  loaded and  TRACE ON is  entered before  the  consultation is
started. ESIE™ then outputs the information shown in Figure 48.
There were 3 rule-lines, 2 questions and 2 
legal answers specified in the knowledge base. 

Figure 48: Output for consulting ec/ORDERCND.KB with tracing enabled

Now duplicate conditions are introduced into the rule of ec/ORDERCND.KB. Listing
138 shows the resulting knowledge base.

1 goal is something
2 
3 legalanswers are yes no *
4 
5 answer is "The answer is " something
6 
7 if a is yes
8 and b is yes
9 and b is yes

10 then something is ab
11 
12 question a is "a is "
13 
14 question b is "b is "

Listing 138: ec/DUPLCND.KB

After loading this knowledge base and entering TRACE ON, the ESIE™ consultation
provides the result shown in Figure 49.
There were 5 rule-lines, 2 questions and 2 
legal answers specified in the knowledge base. 

Figure 49: Output for consulting ec/DUPLCND.KB with tracing enabled

Obviously,  ESIE™ does not check for duplicate conditions. At the beginning of the
consultation, the questions for a and b are asked only once. The duplicates are not a
problem, but they consume rule lines.

– 249 –



The next question is:  How are contradictory conditions handled? The knowledge
base  shown  in  Listing  139 is  based  on  ec/ORDERCND.KB,  but  introduces  a
contradiction in its only rule.

1 goal is something
2 
3 legalanswers are yes no *
4 
5 answer is "The answer is " something
6 
7 if a is yes
8 and b is yes
9 and b is no

10 then something is ab
11 
12 question a is "a is "
13 
14 question b is "b is "

Listing 139: ec/CONTRCND.KB

It is impossible for b to be yes and no at the same time. Nevertheless,  ESIE™ loads
this knowledge base without complaining. After starting a consultation, it asks the
question for a, then the question for b. If the first question is answered yes, it does
not matter how the second question is answered. In both cases, ESIE™ reports an
error in the knowledge base (Figure  50).  If  the first question is answered  no,  no
further question is asked and the error shown in Figure 50 is reported immediately.
Error in Knowledge Base. 
SOMETHING searched for but not found. 

Figure 50: Error message when consulting ec/CONTRCND.KB

This is an excellent example of an error that could in principle be detected during
load time (an equivalent of compile time), but is not. Rather, its consequences cause
an error at consultation time (a run-time equivalent). Normally, one would strive to
detect and report as many errors of this type as early as possible, i.e., during load
time. But ESIE™ does not do this. This (erroneous) behavior must be recorded as an
additional requirement, which will be done at the end of the Rules  Section.

Based on this extensive research, std::vector<> appears to be a suitable container
template for storing conditions. Previously, it was pointed out that a single condition
is  represented  as  a  pair<string,string>.  Therefore,  the  data  member
vector<pair<string,string>>  m_conditions; is  added  to  the  Rule class.  The
conclusion combines the name of a variable and a value assigned to the variable
when the rule is  fired,  that is,  when all its conditions evaluate to  true.  Since the
variable name must be accessed when checking which rule to evaluate, both the
variable name and the value are represented directly as members of type string,
namely  string m_variable, m_value;. This results in the class diagram for  Rule
shown in Figure 51.

– 250 –



Figure 51: Rule class from the data perspective

6.4.1.6. Rules
Now  for the  Rules class.  Based on  the given knowledge,  it  can be assumed that
ESIE™ does not check for duplicate rules, neither literal nor structural, but stores
them anyway. Literal means that two rules are identical in terms of their conditions
and order, as well as the conclusion. Structural means that two rules are identical in
terms of their conditions, but not necessarily in terms of their order, as well as the
conclusion.

First, it is examined what happens when the knowledge base has 401 rule lines. This
is  relevant  because  the  error  message  that  ESIE™ issues  in  this  case  is  not
documented  anywhere.  The  program  in  Listing  140 generates  a  corresponding
knowledge base with 199 literally identical rules plus one rule with three rule lines.
The generation of these rules by a program makes sense, since the manual creation
of such a knowledge base would be tedious and error-prone.

1 // 401RuleLines.cpp by Ulrich Eisenecker, July 29, 2021
2 
3 #include <iostream>
4 using namespace std;
5 
6 int main()
7 {
8    cout << "goal is something" << endl << endl;
9 

10    // no legalanswers
11 
12    for (auto i { 1 }; i<= 199; ++i)
13    {
14       cout << "if a is yes\nthen something is true\n" << endl;
15    }
16    cout <<"if a is yes\nand b is yes\nthen something is true\n" << endl;
17 
18    cout << "answer is \"The answer is \" something" << endl << endl;
19 
20    cout << "question a is \"value of a\"\n" << endl; 
21    cout << "question b is \"value of b\"\n" << endl; 
22 }

Listing 140: ec/401RuleLines.cpp

Compiling  this  program  to  gen_kb and  then  running  it  by  entering  ./gen_kb  >
401RL.KB creates the 401RL.KB knowledge base. When loading this knowledge base,
ESIE™ reports the error  “There are too many rules in the Knowledge Base for me.”
and terminates.

– 251 –

Rule

m_conditions : vector<pair<string,string>>
m_variable : string
m_value : string



Now the first rule in 401RL.KB is deleted with a simple text editor and the result is
saved as  198DUPRL.KB.  The reason for the name of the file is that there are 198
literally identical rules and one other rule. Doing this as a manual step makes sense
because there is only little chance of error in this manual step. Doing it manually is
also more economical than writing a program.

ESIE™ loads 198DUPRL.KB without any problems. After entering TRACE ON,  ESIE™
correctly reports that the knowledge base contains 399 rule lines, 2 questions and 0
legal answers. The consultation runs without any problems. When the first question
for  a is  answered  yes,  ESIE™ reports  “The  answer  is  TRUE” and  ends  the
consultation.  It  is  a  new additional  requirement  that  ESIE™ does  not  check  for
identical rules,  but stores them all,  consuming rule  lines.  Duplicate rules do not
cause problems during a consultation.

Overall,  this argues for  std::vector<> as a container template for storing rules.
Consequently, vector<Rule> m_rules; is the only member of the Rules class. Other
behavior,  for  example  adding  a  rule  and  processing  rules,  will  be  added  later.
Therefore, it makes sense to design Rules as its own class, as shown in Figure 52.

Figure 52: Rules class from the data perspective

Table 25 contains the requirements found in the closer examination of ESIE™ in the
previous  and  the  current  section.  As  already  written,  they  would  have  to  be
integrated into the requirements document, which is not done here since repeating
the ever-growing table of requirements would not make didactic sense.

ID Topic Subtopic Description Source
1.6.1 Syntax IF The conditions are stored in the order in which they appear in

a rule in the knowledge base.
ESIE™,
ORDERCND.KB

1.6.6 Syntax IF ESIE™ does not check for duplicate conditions.  Consequently
they are all stored. The duplicates do not seem to cause any
problems during a consultation.

ESIE™,
DUPLCND.KB

1.6.7 Syntax IF ESIE™ does not check for duplicate rules.  Consequently they
are all stored. The duplicates seem to cause no problem during
a consultation.

ESIE™,
198DUPRL.KB

2.2.21 User  Inter-
face

Top Level After  entering  TRACE  ON,  the  following  information  is
reported: "There were ?? rule-lines, ?? questions and ??\n legal
answers specified in the knowledge base.", where \n stands for a
line feed and ?? for the actual numbers.

ESIE™,  
CONTRCND.KB

3.2.1 Processing Load
Knowledge
Base

If more than 400 rule lines are detected (  requirements 1.6.5→
and 1.6.10),  the following error message is  displayed: "There
are too many rules in the Knowledge Base for me."

ESIE™,
401RL.KB

3.3.6 Processing Consultation If an  error  is  found  in  the  knowledge  base  logic,  the  error
message is "Error in Knowledge Base.\n ?? searched for but not
found.", where \n stands for a line feed and ?? for the name of
the searched element).

ESIE™,  
CONTRCND.KB

– 252 –

Rules

m_rules : vector<Rule>



Table 25:Further requirements for RULE and RULES

6.4.1.7. Variables
Previously, it was explained that a container is required for storing variable names
and values. Therefore, the Variables m_variables; data member was added to the
KnowledgeBase class.  The decisions  about  the  container  template  to  manage  the
variables and the design of the concept variable were postponed. This now needs to
be decided. The first question is whether the concept  variable is its own class. To
answer  this  question,  the  properties of  the  concept  variable are  examined.  A
variable has a  name by which it  is  referred to  and a  value.  Since two variables
cannot have the same name, the name must be unique. However, a single variable
cannot judge whether its name is unique or not. Only the container that manages all
variables  can  do  this.  The  value  of  a  variable  can  be  set  or  not.  It  is  usually
important to know whether a variable has already been initialized with a value or
not. In ESIE™, variables only have string values, and a variable with an empty string
as its value is considered uninitialized. That is, an empty string is not part of the
range of valid values. Therefore, the value of a variable in this case can serve two
purposes:

• A value with an empty string means that the variable is not initialized,
• any other value means that the variable is initialized with exactly this value.

Due to the peculiarities of variable processing in ESIE™, it should not happen that a
variable  is  assigned  more  than  once.  ESIE™ only  attempts  to  assign  values  to
variables that have not yet been initialized. So there is no need to check for multiple
assignments. These are all arguments against designing a variable as its own class.
Instead, variable names and their values can be managed by the container.

Since the value of  a variable is  accessed by its  name,  a  std::map<> would be a
suitable container template. It stores key/value pairs and allows accessing a value,
i.e.  the  value  of  a  variable,  by its  key,  i.e.  the  name of  a  variable.  This  is  very
convenient  and  efficient.  In  addition,  map<> automatically  prevents  duplicate
entries. On the other hand, a map<> stores its entries, the key/value pairs, in its own
internal order. Thus, the order of the variables as they occur in questions, rules,
target,  and answer may not  be preserved.  To avoid  possible  problems due to  a
different order in principle, std::vector<> is again chosen to manage the variables.
Please note that this is purely a precautionary measure that can be checked later
when  the  program  has  been completed  and  executed  without  errors.  Since  a
variable consists  of  a  name and  a  value,  both  of  type  std::string,  vector<> is
instantiated with pair<string,string>. Let element be an element of the container,
element.first is  the  name of  the  variable  and  element.second its  value.
Consequently,  the  data  member  vector<pair<string,string>> m_variables; is

– 253 –



added  to  the  Variables class.  Later,  when  the  application  compiles  and  runs
correctly, it can be checked if std::vector<> can be safely replaced by std::map<>.

That Variables is a standalone class is justified because some methods are added
later.  It  also  ensures  that  there  are  no  duplicates  of  variables  in  the
Variables::m_variables container.  Figure  53 shows the  class  diagram  for
Variables from the data perspective.

Figure 53: Variables class from the data perspective

The methods  have been intentionally omitted. They will be included again in the
design of loading and processing. The representation of aggregation relationships is
redundant since all classes have appropriate attributes for managing exemplars of
the  aggregated  classes.  Some  classes  have  disappeared  because  they  have  been
integrated  into  other  classes.  For  example,  Goal and  Answer from  the  analysis
model  are  now  attributes  of  KnowledgeBase.  It  is  very  interesting  to  see  how
different the class diagrams from analysis  and data design are.  None of  them is
useless because all class diagrams represent the system under development from
different points of view. Also, all diagrams should be updated as new requirements
emerge or progress is made in design and implementation.

6.4.1.8. Data Perspective Consolidated
Figure  54 shows the revised class diagram for the classes and their relationships
from a data design perspective.

– 254 –

Variables

m_variables : vector<pair<string,string>>



Figure 54: Consolidated class diagram from the data perspective

6.4.1.9. Critical Review and Completion
Now it is time to critically review the work done so far to design the system from a
data perspective!

The classes have been thoroughly revised and attributes for aggregations have been
added. New requirements have been found, especially with respect to certain limits,
associated  error  messages,  and  possible  error  states  and  their  handling.  The
following questions are still open:

1. What happens if a variable name exceeds 40 characters (requirement 1.2.35)?
2. What happens if a value exceeds 40 characters (requirement 1.2.35)?
3. What happens if the text of a question exceeds 80 characters (requirement

1.2.45)?

Of course, when writing this text, it would have been easy to revise it so that these
issues were addressed earlier and in a more appropriate context.  But they have
been  mentioned  here  on  purpose.  When  validating  and  adding  requirements,

– 255 –

KnowledgeBase
m_goal : string
m_answer : pair<string,string>
m_legalAnswers: LegalAnswers
m_rules : Rules
m_questions : Questions
m_variables : Variables

LegalAnswers

m_answers : vector<string>

Variables

m_variables : vector<pair<string,string>>

Rules

m_rules : vector<Rule>

Questions

m_questions : vector<pair<string,string>>

Rule

m_conditions : vector<pair<string,string>>
m_variable : string
m_value : string

1

*

1

1

1



humans rarely work perfectly. This must be taken into account when developing
methods and tools. One principle followed here is the iterative flow of requirement
analysis,  analysis modeling,  design modeling,  and – later – implementation. This
iterative and incremental approach helps to uncover open issues and omissions, as
shown here.

The knowledge base shown in Listing 141 has a variable with a 41 character name.
1 goal is 123456789a123456789b123456789c123456789d1 
2 
3 answer is "The answer 
4 is " 123456789a123456789b123456789c123456789d1
5 
6 question 123456789a123456789b123456789c123456789d1 
7 is "Please, enter a value for something "

Listing 141: ec/VAR41.KB

ESIE™ successfully loads this knowledge base without reporting an error. TRACE ON
is then entered at the top level to have ESIE™ output the names of the variables it is
currently  searching  for.  After  GO is  entered,  ESIE™ reports  that  it  is  currently
searching  for  123456789A123456789B123456789C123456789D.  Apparently,  a
variable name longer than 40 characters is silently truncated. As a result,  ESIE™
cannot distinguish between variables whose names are different from character
position 41 upwards. In addition, the lowercase letters in the knowledge base have
been  replaced  with  uppercase  letters.  This  is  a  clear  indication  that  lowercase
letters in variable names are replaced with uppercase letters before they are stored
to comply with requirement 1.1.0.

The  knowledge  base  shown  in  Listing  142 contains  two  values  longer  than  40
characters.

1 goal is something
2 
3 answer is "The answer is " 
4 something
5 
6 if a is yes
7 then b 
8 is 123456789a123456789b123456789c123456789d1
9 

10 if b is 123456789a123456789b123456789c123456789d1
11 then something 
12 is abcdefghi1abcdefghi2abcdefghi3abcdefghi4a
13 
14 question a
15 is "value of a"

Listing 142: ec/VAL41.KB

When loading this knowledge base, ESIE™ does not report any warnings or errors.
Before the consultation begins, TRACE ON is entered. After the question value of a is
answered  yes,  ESIE™ outputs  that  it  has  learned  that  B is
123456789A123456789B123456789C123456789D and  that  SOMETHING is

– 256 –



ABCDEFGHI1ABCDEFGHI2ABCDEFGHI3ABCDEFGHI.  This  shows  that  values  are
treated in the same way as variable names. If their length exceeds 40 characters,
they are silently truncated to 40 characters.  Also,  the values are  stored with all
lowercase letters previously converted to uppercase.

Last but not least, it is examined how ESIE™ handles text in answers and questions
that is longer than 80 characters. The knowledge base shown in Listing 143 contains
two  texts,  each  81  characters  long.  One  of  them  consists  of  consecutive  non-
whitespace characters, the other contains additional whitespace characters.

1 goal is something
2 
3 answer is 
4 "1234567a  1234567b  1234567c  1234567d
5 12345678e 12345678f 12345678g 12345678h_1" 
6 something
7 
8 if a is yes
9 then something is great!    

10 
11 question a
12 is "12345678a_12345678b_12345678c_12345678d_12345678e_12345678f_12345678g_12345678h_1"

Listing 143: ec/TXT81.KB

ESIE™ loads the knowledge base without complaint.  After entering  GO at the top
level,  ESIE™ asks the question. The text of the question is truncated after the last
underscore, i.e. after 80 characters. If one answers the question with yes, one gets
an interesting result, as shown in the screenshot in Figure 55.

Figure 55: Processing of ec/TXT81.KB saved in UNIX format

All whitespaces in the response are retained, including the newline character. After
123467d there are no more whitespaces, which has been checked with a text editor.
The line feed character, which is also a whitespace, causes a change to the next line
where the output continues. The text is truncated after 80 characters.

The knowledge base was stored in Unix format, with lines terminated with a single
line feed. ESIE™ is an MS-DOS application and therefore expects text files in MS-DOS
format. Under MS-DOS, a line of text is terminated with a carriage return/line feed

– 257 –



sequence.  After  saving  the  knowledge  base  in  MS-DOS format with  the  name
ec/TXT81DOS.KB, the output changes and looks as expected (Figure 56).

Figure 56: Processing of ec/TXT81DOS.KB saved in MS-DOS format

Out  of  curiosity,  the  knowledge  base  is  saved  in  MAC format with  the  name
TXT81MAC.KB. Under macOS, text lines are terminated only with a carriage return.

After loading the knowledge base, starting the consultation and entering the answer
yes, another output is generated as shown in Figure 57.

Figure 57: Processing of ec/TXT81MAC.KB saved in macOS format

Now the first line of the answer text is missing. This is because the output of the first
line ends with a carriage return. This moves the output cursor to the first column
where the second line of text overwrites the first line.

It should be noted that lowercase letters are preserved in the text of answers and
questions,  i.e.  they are not converted to uppercase.  Therefore,  requirement 1.1.0
must be adapted accordingly. In addition, requirement 1.2.40 is correct, but it must
be  emphasized  that  non-printable  control  characters  are  also  preserved.  In
addition,  it  is  expressly  pointed  out  that  it  is  not  possible  to  insert  a  double
quotation mark in a text, as a double quotation mark either begins or ends a text.

– 258 –



It is  assumed that invalid commands were unknowingly entered at the top level
during the previous investigations. This showed that ESIE™ reliably detects invalid
commands at the top level and reports them as errors.

Table  26 shows the changed and added requirements. For changed requirements,
the text of the previous version is formatted in italics and highlighted in light blue.

ID Topic Subtopic Description Source
1.1.0 Syntax General With  the  exception  of  text  in  variables  and

questions,  the  program  is  case  insensitive
everywhere.

MAN, p.13,
ESIE™,
TEXT81.KB

1.2.36 Syntax Knowledge Base Variable  names  and  values  longer  than  40
characters  are silently truncated to a  length of  40
characters.

ESIE™, 
VAR41.KB,  
VAL41.KB

1.3.37 Syntax Knowledge Base Lowercase letters in variable names and values are
replaced by corresponding uppercase letters before
saving.

ESIE™,  
VAR41.KB,  
VAL41.KB

1.2.40 Syntax Knowledge Base A <text> part is enclosed in double quotes "", and may
contain any  of  the  255  characters  of  the  extended
ASCII  character  set  except  the  double  quote,
including non-printable control characters.  It is not
possible to include a double quotation mark in <text>.

MAN, p. 15,
ESIE™,
TEXT81.KB,
TXT81DOS.KB,  TXT81-
MAC.KB

1.2.46 Syntax Knowledge Base Text  that  longer  than  80  characters  is  silently
truncated to 80 characters.

ESIE™,
TXT81DOS.KB,
TXTM81MAC.KB

2.2.6 User Interface Top Level When entering an  invalid  top-level  command,  the
error message "I don't understand that command.\n\
nValid options are: TRACE ON, TRACE OFF, GO, AND
EIT." is issued (\n stands for a line feed).

ESIE™,
any KB

Table 26:Further requirements for variable names, text and Top Level

This concludes the design from a data perspective for now. Next, the design will be
refined with regard to loading a knowledge base.

6.4.2. Loading
According to the captured requirements, a knowledge base is a simple text file with
five  rule  types  that  can  occur  in  any  order.  Each  of  the  rule  types  consists  of
character strings. There are two categories of strings: any sequence of characters
without spaces and any sequence of characters enclosed in double quotation marks.
For loading a knowledge base, it is necessary to explore how strings can be entered
in C++. The program shown in the Listing 144 helps to understand how C++ inputs
strings.

1 // InputToken.cpp by Ulrich Eisenecker, January 23,2023
2 
3 #include <iostream>
4 #include <string>
5 
6 using namespace std;
7 
8 int main()
9 {

10    string s;

– 259 –



11    while (cin)
12    {
13       cin >> s;
14       cout << s << endl;
15    }
16 }

Listing 144: ec/InputToken.cpp

Figure  58 shows how to compile the program and run it in a terminal window.  It
also shows some lines of the generated output file. The user's input is shown in a
blue bold font.
ec % g++ -o it InputToken.cpp
ec % ./it < UN_AD_CN.KB > output.txt
ec % cat output.txt
goal
is
container
legalanswers
are
yes
no
*
answer
is
"The
STL
container
matching
your
needs
is
probably
a(n)
"

Figure 58: Processing of inputs by the ec/InputToken.cpp program

The prompt indicates that ec is the current directory. This is important because ec
contains the knowledge base UN_AD_CN.KB.

The command in the first line compiles  InputToken.cpp into the executable file  it
specified after the -o option. It is then executed. To execute a binary file in a UNIX-
based operating system,  its name must be  preceded by ./.  The  dot represents the
current directory and / separates the directory from the file name. The first chevron,
<, redirects the program’s input from the terminal window to  UN_AD_CN.KB. The
second chevron, >, redirects the program's output to the output.txt file. Then the cat
command is used to display output.txt.

Apparently rule  names,  i.e.  goal,  legalanswers,  answer,  etc.,  reserved words and
special characters, e.g.  is and  *, as well as variable names and values are read as
required. After extraction, lowercase letters need to be converted to uppercase. The
situation is different for strings in double quotation marks.

– 260 –



Of course, the program can also be started interactively to see how it accepts strings
in double quotes.  Figure  59 shows an example dialog.  Again,  the user's  input is
displayed in blue letters.

The user input  contains  several  spaces  and tabs.  To signal  the end of  the input
stream, an end-of-file character must be entered, e.g.  Ctrl-D on  macOS or  Ctrl-Z on
MS Windows. Alternatively, the program can be interrupted by pressing Ctrl-C (on
both  macOS and  MS  Windows).  When  a  string  is  extracted  with  the  >> input
operator (also known as the stream extraction operator), all whitespace characters
at  the  beginning of  the  string  are consumed and discarded.  After  that,  all  non-
whitespace characters are read and preserved until a whitespace character occurs.
The whitespace character  is  not extracted and remains in the input stream; the
preserved characters  are returned as  the resulting  string.  One way to  extract  a
quoted string is to input tokens, concatenate them until the initial quote character
matches  a  closing  quote  character,  and  return  the  resulting  string  without  the
double quotation marks. Unfortunately, this would remove all whitespaces.
"How are you?" 
"How 
are 
you?" 

"How   are you?   " 
"How 
are 
you? 
" 

Figure 59: Interactive execution of the ec/InputToken.cpp program

Therefore, this approach is completely abandoned. Instead, a function is developed
that inputs either strings without double quotation marks, i.e., strings that contain
neither spaces nor double quotation marks, or strings enclosed in double quotation
marks but do not contain them.

The program  in  Listing  145 shows  a  prototypical  implementation  of  the
inputToken() function that does just that.  inputToken() accepts a reference to an
istream. Thus, it accepts input file streams, input string streams, or any other type-
compatible class. It returns the extracted token as a value of type std::string.

1 // Input2TokenTypes.cpp Ulrich Eisenecker, January 24, 2023
2 
3 #include <iostream>
4 #include <string>
5 #include <cctype> // because of toupper()
6 using namespace std;
7 
8 [[nodiscard]] string inputToken(istream& is) 
9 {

10    string token { };
11    is >> ws; // remove leading whitespace
12    if (is.peek() == '\"')
13    {
14       is.get(); // discard initial quote

– 261 –



15       while (is && is.peek() != '\"')
16       {
17          token += is.get();
18       }
19       if (is && is.peek() ==  '\"')
20       {
21          is.get(); // discard closing quote
22       }
23    }
24    else
25    {
26       while (is && is.peek() > 32 && is.peek() != '\"')
27       {
28          token += toupper(is.get());
29       }
30    };
31    return token;
32 }
33 
34 int main()
35 {
36    string token { };
37    while (cin)
38    {
39       token = inputToken(cin);
40       if (cin)
41       {
42          cout << '[' << token << ']' << endl;
43       }
44    }
45 }

Listing 145: ec/Input2TokenTypes.cpp

The first statement, is >> ws; (line 11), removes leading whitespace by extracting
the std::ws manipulator from the input stream is. After that, the next character in
is is either a non-whitespace character or the end of the file has been reached. In
the latter case, all subsequent input operations are ignored.

In  the  first case,  the  condition  of  the if  statement  is  executed  (line  12).  The
istream::peek() member  function searches  for  the  next  character  in  the  input
stream,  but  does  not  extract  it.  If  no  character  is  currently  available  because
istream::peek() is executing on cin, it waits until a character becomes available. If
the next character is a double quote, the then part of the if statement is executed,
which  extracts a string enclosed in a pair of double quotes (lines 13 through 23).
Otherwise, the  else part is executed, which extracts a string that does not contain
spaces or double quotes (lines 25 through 30).

istream::get() (line  15),  an  overloaded  member  function  of  istream,  extracts
exactly one character and returns its character code value as int. When the end of
the  input  stream is  reached,  istream::get() returns  the end-of-file (EOF)  value.
Here,  the result  of  the function call  is  ignored, because the  only purpose of  the
function  call  is  to  extract  and  discard  the  double  quotation  mark.  The  next
statement  is  a  while  loop  (line  15).  Its  condition  depends  on the  short-circuit
evaluation of logical expressions in  C++ (Section  bool Type ). The first part of the

– 262 –



condition, is, evaluates to true if no error flag is set for the input stream (line 15).
This is possible because there is a type conversion operator defined for streams that
converts a stream to a value of type  bool with respect to the current state of the
stream, i.e. true if the stream is good and false otherwise. If the value is false, the
second part of the condition, is.peek() != '\"', is not evaluated at all. If the value
is true,  is.peek() != '\"' is  evaluated.  If  the  next  character  is  not  a  double
quotatiuon  mark,  it  is  extracted  and  appended  to  the  token,  namely:  token +=
is.get(); (line 17), otherwise nothing is done. When the while loop is finished, the
if statement extracts the terminating double quotation mark if the stream is still
valid (lines 19 – 22).

The else branch of the top-level if statement (lines 25 through 30) extracts a string
that does not contain spaces or double quotes.  The else branch consists of a single
while loop with a complex condition that also exploits the short-circuit evaluation of
logical expressions (line 26). The first part checks if the stream is still OK. If it is, the
second part is evaluated. It checks if  is.peek() returns a character with a value
greater than 32. 32 is the ASCII value of the space character. All characters with an
ASCII value less than 32 are considered as whitespaces. If this condition is met, the
third condition is tested. It is checked whether is.peek() is not a quote character. If
this applies, the statement  token += toupper(is.get()); (line 28) is executed. As
explained  earlier,  is.get() extracts  the  next  character  from the  stream  is and
returns its ASCII value as int. Normally, std::toupper() accepts a value parameter
of a char. Here, an automatic type conversion of the ASCII value to a value of type
char is  performed. If the passed value is a lowercase character, the value of the
corresponding uppercase  character  is  returned,  otherwise  the  value  is  returned
unchanged. Then, the value returned by std::toupper() is converted to char by an
automatic type conversion and appended to the C++ string token. Finally,  token is
returned as the result.

The central part of the main() function is a while loop that is executed as long as cin
is  valid (lines 37ff.).  It  calls  the  inputToken() function and passes  cin to it  as a
parameter. The result is assigned to the string token defined in main(). If cin is still
valid after the last input operation, the extracted token is sent to cout, enclosed in
square  brackets.  This  is  useful  to  judge  whether  all  characters  were  extracted
correctly. The additional check of cin before sending the just extracted token to the
output is necessary because  cin might have immediately contained an end-of-file
character or only spaces followed by an end-of-file character.

After having compiled this program as an executable, it is highly recommended to
try it out. Executing ./it < UN_AD_CN.KB in a console window will also give an idea
of how this program works.

Now that inputToken() is available, it is easy to think about loading a knowledge
base.

– 263 –



First,  inputToken() becomes  a  member  function  of  the  KnowledgeBase class.
Second,  a  member  function  input() is  added  to  KnowledgeBase because  it  is
responsible for loading the entire knowledge base. Thus,  KnowledgeBase::input()
is the entry point for loading. It can be conceptualized as a while loop that executes
as long as the input stream containing the knowledge base is in a good state. It first
calls  inputToken() and then checks if the result matches an  ESIE™ keyword. If it
does, another member function is called to input the rest of the corresponding rule.

Listing 146 gives an impression of the structure of this while loop. It uses so-called
pseudo code, which resembles a programming language but is not intended to be
interpreted or compiled. As a mixture of natural and formal language, it is used to
outline an algorithm or a procedure to be design.

1 while (input is ok) 
2 { 
3    token = inputToken(input) 
4    if token equals "LEGALANSWERS" 
5       inputLegalAnswers(input) 
6    else if token equals "GOAL" 
7       inputGoal(input) 
8    else if token equals "IF" 
9       inputRule(input) 

10    else if token equals "QUESTION" 
11       inputQuestion(input) 
12    else if token equals "ANSWER" 
13       inputAnswer(input) 
14    else if token is_not empty 
15       output Invalid Rule in Knowledge Base. 
16 }

Listing 146: Pseudo code for loading a knowledge base

All  methods  mentioned  here  for  the  first  time  become  member  functions  of
KnowledgeBase.  Again, pseudo code  is used to outline what the more complex of
these  new  member  functions  do.  It  must  be  emphasized  that  each  new  input
method inputs the remaining syntactic elements of the corresponding entity, since
its  first  element has already been extracted.  KnowledgeBase::inputLegalAnswers
(Listing  147)  first  calls  the  new  method  KnowledgeBase::inputIsAre(),  which
consumes  the  filler  "IS" or  "ARE".  It  then  starts  a do  loop  that  calls
KnowledgeBase::inputToken().  If  the  result  is  not  the  splat (asterisk,  *),  the
m_legalAnswers.add() method is called to add the token as a new answer. Once the
asterisk is extracted, the  do loop is terminated. Listing  147 shows the structure of
this do loop as pseudo code.

1 inputIsAre(input) 
2 string answer; 
3 do 
4 { 
5    answer = inputToken(input) 
6    if answer isNot "*" 
7    { 
8       m_legalAnswers.add(answer) 
9    } 

10 } while answer isNot "*" 

– 264 –



Listing 147: Pseudo code for inputting a LegalAnswer

As written before,  KnowledgeBase::inputIsAre() reads the next  token from the
input  stream,  which  should  have  the  value  "IS" or  "ARE" according  to  the
requirements 1.4.0, 1.5.0, 1.6.0, 1.6.5 and 1.7.0. Since this method is relatively simple,
no pseudo code is given for it.

Again,  all  emergent  methods  are  captured  as  new  member  functions  of  the
corresponding classes.

KnowledgeBase::inputGoal() first  calls  KnowledgeBase::inputIsAre().  Then,
m_goal is assigned the result of the call to  KnowledgeBase::inputToken(). Finally,
m_goal is added to the attribute m_variables by calling Variables::add(). Because
of the simplicity of this method, no pseudo code is shown for it.

KnowledgeBase::inputRule() (Listing 148) consists of two sections. The first section
defines a local variable called rule of type Rule. The following do loop attempts to
input  a  variable-value pair from the  input stream.  This  is  achieved by a  new
member function KnowledgeBase::inputVariableValue(). If the input is successful,
the variable is added to m_variables, and the variable and value are added to the
rule as a new condition by calling rule.addCondition(variable,value);. Then the
next token is extracted from the input. The do loop is repeated as long as this token
equals  "AND".  The second section starts,  if the last extracted  token has the value
"THEN". In this case a variable-value pair is extracted again from the input stream.
If successful, the variable is added to m_variables, and the conclusion is added to
rule by calling rule.addConclusion(). This completes the rule input, and the rule
is added to m_rules by calling m_rules.::add(). Listing 148 shows the pseudo code
for both sections of the member function KnowledgeBase::inputRule().

1 string variable, value, token 
2 Rule rule 
3 do 
4 {  
5    inputVariableValue(input,variable,value) 
6    m_variables.add(variable) 
7    rule.addCondition(variable,value)  
8    token = inputToken(input) 
9 } while token equals "AND" 

10 
11 if token equals "THEN" 
12 { 
13    inputVariableValue(input,variable,value) 
14    m_variables.add(variable) 
15    rule.addConclusion(variable,value) 
16    m_rules.add(rule) 
17 } 

Listing 148: Pseudo code for inputting a Rule

The member function KnowledgeBase::inputVariableValue() extracts the name of
the  variable,  calls  KnowledgeBase::inputIsAre(),  and extracts a  value from the
input stream. This method is relatively simple, so no pseudo code is given for it.

– 265 –



The next input method to be discussed is KnowledgeBase::inputQuestion() (Listing
149).  Its  first  action  is  to  extract  the  name  of  the  variable.  After  that,
KnowledgeBase::inputIsAre() is  called.  Next,  the  subject,  i.e.  the  text  of  the
question, is extracted. Finally, the variable  name is added to the variable store by
calling  m_variables.add(variable);, and the  variable and  subject are added to
the  question  store  by  calling  m_questions.add(variable,subject);.  Listing  149
shows the pseudo code for this method.

1 string variable 
2 variable = inputToken(input) 
3 inputIsAre(input) 
4 string subject 
5 subject = inputToken(input) 
6 m_variables.add(variable) 
7 m_questions.add(variable,subject) 

Listing 149: Pseudo code for inputting a Question

KnowledgeBase::inputAnswer() completes  the  various  input  methods.  First,  it
checks if an answer has already been read from the knowledge base. This is the case
if  m_answer.first or  m_answer.second is  not  the  empty  string.  Next,
KnowledgeBase::inputIsAre() is  called.  Then  the  subject and  the  name  of  the
variable  are  extracted.  Again,  the  variable is  added  to  the  variable  store,  and
finally the subject and variable are stored as a pair in m_answer. The structure of
this method is similar to that of extracting a question. Therefore, no pseudo code is
shown for this method.

The class diagram in Figure 60 now shows everything from the perspectives of data
and loading.

– 266 –



Figure 60: Class diagram with integrated data and loading perspective

6.4.3. Processing
Requirements 3.3.10, 3.3.15, 3.3.20, 3.3.50, and 3.3.70 state that the program manages
a stack that is important for processing. The requirements describe some relevant
aspects, such as that the goal is the first element pushed onto the stack and when an
element is popped from the stack. However, they do not describe what else is put on
the  stack and when. This information seems insufficient to make the knowledge
base processing  accurate.  How can this  problem be fixed? Of  course,  one could
contact the author of the software. Another highly recommended option is to get
books  on  inference  in  rule-based  expert  systems  and  read  them,  or  search  the
Internet  for  relevant information.  In addition,  one can take a  closer look at  the
output with the trace function turned on (TRACE ON) and, of course, form one's own
opinion.

– 267 –

KnowledgeBase
m_goal : string
m_answer : pair<string,string>
m_legalAnswers: LegalAnswers
m_rules: Rules
m_questions : Questions
m_variables : Variables
inputToken()
inputIsAre()
inputLegalAnswers()
inputGoal()
inputVariableValue()
inputRule()
inputQuestion()
inputAnswer()
input()

LegalAnswers

m_answers : vector<string>

add()

Variables

m_variables : vector<pair<string,string>>

add()

Rules

m_rules : vector<Rule>

add()

Questions

m_questions : vector<pair<string,string>>

add()

Rule

m_conditions : vector<pair<string,string>>
m_variable : string
m_value : string

addCondition()
addConclusion()

*

1

1

1

1



In what follows, the last option is pursued. The expectations of what the classes can
do  and  what  responsibilities  can  be  assigned  to  them  will  guide  the  reflection
process.  Accomplishing  this  task  with  just  the  own  mind  fosters  a  deep
understanding of how a knowledge base is processed. Alternatively, a good book, a
web  reference  or  even  the  source  code  would  be  a  valuable  tool  to  perhaps
accomplish this task with less effort and in less time.

When a knowledge base is fully loaded and running, it attempts to assign a value to
the  goal variable.  The  attempt  to  assign  a  value  to  a  variable  is  called  prove.
Consequently, the prove() method is added to the KnowledgeBase. Listing 150 shows
its prototype.

1 bool KnowledgeBase::prove(const string& variable);

Listing 150: Declaration of KnowledgeBase::prove()

This  method  returns  true if  it  can  assign  a  value  to  the  variable,  and  false
otherwise.  What  can  be  a  useful implementation  of  this  method?  Well,
KnowledgeBase::prove() can  ask  Rules to  prove  the  variable.  Therefore,  Rules
must  also  have  a  prove() method.  Since  Rules does  not  have  access  to  the
knowledge base's variable store, i.e.  KnowledgeBase::m_variables, the knowledge
base must pass itself as an additional parameter. Listing 151 shows the prototype of
this method.

1 bool Rules::prove(KnowledgeBase& kb,const string& variable);

Listing 151: Declaration of Rules::prove()

This method returns true if a value has been assigned to the variable and false if
not.

To illustrate the sequence of actions, a new UML diagram is introduced, namely the
sequence  diagram.  The  diagram  in  Figure 61 shows  a  knowledge  base  and  its
m_rules attribute. Since the name of the knowledge base is not important, its name
in the upper left object box is :KnowledgeBase. This denotes an anonymous object. If
this object had a name, it would  appear before the colon. The second object box
stands for  m_rules:Rules.  This  object  has a  name,  namely  m_rules.  The dashed
lines pointing down from the object boxes are so-called lifelines. Time runs from top
to bottom. In  Figure 61, both objects exist for the entire time represented by the
diagram. This may be different in other scenarios. The left arrow, which starts from
a small  filled circle,  represents  a  so-called  found message,  i.e. the sender  of  the
message is not relevant. The name of the message is in its label, here prove(). When
the message hits the  :KnowledgeBase lifeline,  it  starts an activity.  This activity is
symbolized  by  a  so-called  activity  bar.  The  activity  bar  extends  as  long  as  the
processing  of  the  method  continues.  As  a  result  of  receiving  this  message,
:KnowledgeBase itself sends a message to m_rules, namely prove(). The processing

– 268 –



of this message is marked by another activity bar that starts at the point where the
arrow begins and extends to the end of the activity.

Figure 61: Sequence diagram for starting prove()

This diagram is not yet complete. More participating objects will be added and more
symbols will be introduced next.

An exemplar of Rules maintains exemplars of Rule. Thus, Rules::prove() iterates
over  its  rules  and  asks  each  rule  if  it  can  prove  the  variable.  If  a  rule  can
successfully assign, i.e.  bind a value to the variable,  Rules::prove() immediately
returns true. If no rule can assign a value to the variable, the method returns false.
Listing 152 shows the pseudo code for this method.

1 Rules::prove
2    input parameters are knowledgebase, variable
3    return bool
4 for (rule in m_rules)
5    if rule.prove(knowledgebase,variable)
6       return true
7 return false;

Listing 152: Pseudo code of Rules::prove()

Now the attempt to bind a value to a variable is passed from Rules to a single Rule,
as Figure 62 illustrates.

– 269 –

:KnowledgeBase m_rules:Rules

prove()
prove()



Figure 62: Sequence diagram for further processing of prove()

Next, Rule::prove() is examined in more detail. Listing 153 shows the prototype of
this method. Listing 154 describes its implementation using pseudo code.

1 bool Rule::prove(KnowledgeBase& kb,const string& variable);

Listing 153: Declaration of Rule::prove()

1 // knowledge base and variable are function parameters
2 if variable is_not m_variable
3    return false
4 for (condition in m_conditions)
5    value = knowledgebase.getValue(condition.first)
6    if value is empty
7       if not knowledgebase.prove(condition.first) and
8          not knowledgebase.askValue(condition.first)
9          return false

10       value = knowledgebase.getValue(variable)
11    if value is_not condition.second
12       return false
13 knowledgebase.setVariable(m_variable,m_value)
14 return true

Listing 154: Pseudo code of Rule::prove()

This method is complex. First it checks if the  variable of its conclusion matches
m_variable.  If not,  it  returns  false (line 3),  because it definitely cannot assign a
value to variable.

Then the elementary conditions of the rule managed by Rule::m_conditions (line
4)  are  traversed.  It  should  be  noted  that  an  elementary  condition  checks  for
equality,  while  all  elementary  conditions  are  associated  with  logical  And.  All
elementary  conditions  together  are  called  a  (complex)  condition.  However,  a
(complex) condition can also consist of only one elementary condition. The first step
in the loop is to query the knowledge base for the current value of the variable of
the  current  elementary  condition,  i.e.  condition.first,  by  calling
knowledgebase.getValue(condition.first) (line  5)  and  assigning  the  result  to
value. If value is the empty string (line 6), the variable (condition.first) has not

– 270 –

:KnowledgeBase m_rules:Rules

prove()
prove()

:Rule

prove()



been set yet. In this case, the knowledge base is asked to prove this variable (line 7).
If the knowledge base cannot successfully prove the variable, the knowledge base is
asked if a question can bind a value to the variable (line 8). The order of calling
KnowledgeBase::prove() and  KnowledgeBase::askValue() is chosen according to
requirement  3.3.75.  Please  note  how  the  short-circuit  evaluation  of  Boolean
expressions is used to implement this behavior (Section bool Type ). If  asking for a
value also fails, the method returns false (line 9), because it cannot assign a value
to the variable (condition.first).

If the knowledge base has assigned a value to the variable (either by proof or by
query), the knowledge base must be asked again for the value of the variable (line
10), since it now has a value other than the empty string.

If  the  determined  value differs  from  the  value  of  the  elementary  condition
(condition.second),  the method returns  false (line 12),  because this  elementary
condition is not fulfilled, and therefore the (complex) condition cannot be fulfilled.

Finally, the last elementary condition was evaluated. If the method did not return
false before, all condition parts are fulfilled. This means that the rule can fire, that
is, it can assign, i.e. bind the value of its conclusion (m_value) to the variable of its
conclusion  (m_variable).  This  is  done  by  asking  the  knowledge  base  to  set  the
variable to the appropriate value (line 13). Ultimately, the method returns true.

The flowchart in Figure 63 illustrates the algorithm described for Rule::prove().

– 271 –



Figure 63: Flowchart for the Pseudo code of Rule::prove()

– 272 –

Begin

value = knowledgebase.
getVariable(condition.first)

knowledgebase.
prove(condition.first)

value != condition.second

variable != m_variable for condition in
m_conditions

value = knowledgebase.
getVariable(variable)

value == ""

End

return truereturn false

false

true

false

false

true

false

true

true

true

false

false

true

knowledgebase.
askVariable

(condition.first)

knowledgebase.setVariable
(m_variable,m_value



The  sequence  diagram  in  Figure  64 gives  a  simplified overview  of  an  example
interaction  between  a  KnowledgeBase exemplar,  a  Rules exemplar,  and  two
exemplars of Rule. After the message prove() reaches the left :Rule, it is assumed
that the left :Rule asks the :KnowledgeBase to prove a variable, which is illustrated
by the arrow leaving the diagram to the right and re-entering from the left. Since
this  arrow entering from the left  does not  have a filled circle,  it  is  not a  found
message. As a consequence of receiving this message, :KnowledgeBase asks m_rules
again to prove the corresponding variable.  m_rules asks another  :Rule (the right
:Rule) to prove the corresponding variable. The right :Rule returns to m_rules with
a  dashed  line,  m_rules returns  to  :KnowledgeBase with  a  dashed  line,  and
:KnowledgeBase returns with a dashed line that leaves the diagram to the left but
re-enters  from the  right.  After  that,  there  are  more  dashed  lines  indicating  the
returns. This is the end of the activity bars. It should be pointed out that because of
indirect  recursion,  a  second  activity  bar  appears  for  m_rules,  which  is
superimposed on top of the first as a slightly thicker rectangle to make it easier to
recognize.

Figure 64: Sequence diagram for the further processing of prove()

Rule::prove() calls  a  method  that  has  not  yet  been  introduced,  namely
KnowledgeBase::askValue(). Listing 155 shows the prototype of this method.

1 bool askValue(const string& variable);

Listing 155: Declaration of KnowledgeBase::askValue()

The knowledge base delegates this task to its member m_questions, which manages
all questions. Since an exemplar of  Questions has no access to the variable store,
the knowledge base must pass itself as a parameter. If no question is found  that
assigns a value to  variable, the method returns  false, otherwise  true. Since this
method is very simple, no pseudo code for it is shown.

– 273 –

:KnowledgeBase m_rules:Rules

prove()
prove()

:Rule :Rule

prove()
prove()

prove()
prove()

prove()



Listing 156 shows the prototype of the Questions::ask() method, while Listing 157
shows the pseudo code for its implementation.

1 bool Questions::ask(KnowledgeBase& kb,const string& variable);

Listing 156: Declaration of Questions::ask()

1 // knowledgebase and variable are function parameters
2 string answer 
3 for (question in m_questions) 
4    if question.first is variable 
5       do 
6       { 
7          print question.second 
8          input answer 
9          if knowledgeBase.isLegalAnswer(answer) 

10             knowledgebase.setVariable(question.first,answer) 
11             return true 
12          else 
13             print Illegal answer 
14             print Legal answers are 
15             knowledgebase.outputLegalAnswers()
16       } until knowledgebase.isLegalAnswer(answer) 
17 return false 

Listing 157: Pseudo code of Questions::ask()

This  method  iterates  through  the  questions  (line  3),  looking  for  a  question  for
variable (line  4).  When it  finds  a  question,  it  outputs  its  subject,  i.e.
question.second (line 7), and asks for an  answer,  making sure that the answer is
valid (lines 9ff.). Then the value (answer) of the variable (question.first) is set by
calling  knowledgebase.setVariable(question.first,answer),  and  the  method
returns true (line 11). If no question is found, the method returns false (line 17).

Two  methods  appear  here  for  the  first  time,  namely
KnowledgeBase::isLegalAnswer() and  KnowledgeBase::outputLegalAnswers().
Both  methods  have  simple  implementations.  The  first  method  simply  returns
m_legalAnswers.isLegal(answer) and the second calls  m_legalAnswers.output().
Therefore, no pseudo code is specified for them.

Overall,  the  processing  has  now  been  outlined  in  sufficient  detail.  Since
KnowledgeBase indirectly asks a Rule to assign a value to a variable, and the Rule in
turn can ask a KnowledgeBase to assign a value to a variable, the algorithm is a case
of indirect recursion (see Recursion  Section). In this way, the various function calls
build up the function call  stack.  Whenever  a  variable  is  successfully  assigned a
value,  the corresponding function returns and the top entry of the function call
stack  is  removed.  Thus,  the  stack  mentioned  in  the  requirements  is  indirectly
realized by the function call stack. It has already been mentioned that recursion
should  be  avoided  in  C++,  since  it  is  not  primarily  designed  as  a  recursive
programming language. In this case, the recursive implementation will serve as a
reference  point  for  possible  future  iterative  implementations.  When both

– 274 –



implementations of the inference process, recursive and iterative, are available, it
might be instructive to compare them in terms of performance.

All methods involved in processing must be assigned to the appropriate classes in
the class diagram. The class diagram in Figure  65 shows all members involved in
data, loading and processing.

Figure 65: Class diagram with integration of all perspectives

– 275 –

KnowledgeBase
m_goal : string
m_answer : pair<string,string>
m_legalAnswers: LegalAnswers
m_rules: Rules
m_questions : Questions
m_variables : Variables
inputToken()
inputIsAre()
inputLegalAnswers()
inputGoal()
inputVariableValue()
inputRule()
inputQuestion()
inputAnswer()
input()
prove()
setVariable()
getVariable()
askVariable()
isLegalAnswer()
outputLegalAnswer()

LegalAnswers

m_answers : vector<string>

add()
isLegal()
output()

Variables

m_variables : vector<pair<string,string>>

add()
set()
get()

Rules

m_rules : vector<Rule>

add()
prove()

Questions

m_questions : vector<pair<string,string>>

add()
ask()

Rule

m_conditions : vector<pair<string,string>>
m_variable : string
m_value : string

addCondition()
addConclusion()
prove()

*

1

1

1

1



6.5. Implementation
The following shows the implementation of the different entities in terms of their
dependencies.  An entity with no or  less dependencies is  shown before an entity
with more dependencies.

If applicable, each implementation part is discussed in terms of data, loading and
processing. Emerging requirements and important improvements are presented as
they occur.  This is the maximum amount of order that can be achieved without
giving a false impression of the development of a similar program in practice. In
fact, the development of a program would appear rather chaotic, depending on the
experience of the software developers and their personal knowledge of the problem
domain  of  the  program.  However,  it  is  precisely  iterative  and  incremental
development that is at the core of  agile software development methods, which are
the de facto standard for software development today.

Since the source code contains more than 800 lines, the program is presented only
in  excerpts. Otherwise, reading and understanding it would become too difficult.
The complete program is contained in ec/EC.cpp. It is recommended to load it into
an editor and browse through it while reading the following text.

6.5.1. Include Files
The Listing  158 shows the  initial  comment,  the  includes,  and  the  import  of  the
namespace std.

1 // EC.cpp by Ulrich Eisenecker, January 25, 2024
2 
3 #include <iostream>
4 #include <fstream>
5 #include <string>
6 #include <algorithm>
7 #include <vector>
8 #include <utility> // because of pair<>
9 #include <cctype> // because of toupper()

Listing 158: EC.cpp – included files

The first line of the program is a comment stating the name of the program, its
author author and the date of completion. The program is called  EC, which is an
acronym for ESIE™ Cover, since it can be considered a cover version of the original
ESIE™.

The  header  file  <iostream> is  required  for  general input  and  output.  The  user
interface of EC is implemented with common console input and output. This differs
from  ESIE™,  which  uses  text  output  and  input  in  graphics  mode.  However,  the
content and sequence of EC's input and output are exactly the same as ESIE™.

– 276 –



The  <fstream> header  file  must  be  included  because  loading  a  knowledge  base
involves processing files.

All strings are of type std::string. Therefore <string> is included.

As mentioned several times, the implementation of  EC makes intensive use of the
Standard Template  Library (abbreviated  STL),  which is  part  of  the  C++ standard
library. Algorithms of the STL are contained in <algorithm>, while the header file
<vector> provides the container template std::vector<>, which is a kind of Swiss
Army knife of all container types.

The struct  template std::pair<> is  explained  in  the  Data  Section.  To  use  it,
<utility> is included.

Since the toupper() function is used in KnowledgeBase::inputToken(), <cctype> is
included.

Finally, using namespace std; imports all identifiers of the namespace std, which
contains all entities of the previously included header files. This global namespace
import is acceptable because the implementation of EC is contained in a single large
file.

6.5.2. Logger Class
When implementing the processing of a knowledge base, replication of the  ESIE™
tracing messages  proved  to  be  a  serious  challenge.  Interestingly,  the  processing
algorithm  implemented  in  the  various  methods  named prove() is  relatively
insensitive to change. In addition, it was not immediately clear at which point in the
code  the  trace  messages  should  be  issued.  To  better  understand  the  actual
processing, debugging the program and examining the function call stack was not
very helpful because it took a long time to display the processing steps of interest
and the amount of information presented was overwhelming. Therefore, another
way  to  understand  the  processing  was  needed.  The  necessary  functionality  is
implemented in the Logger class, shown in the Listing 159. It introduces some new
features.

1 constexpr bool loggingActive { false };
2 
3 // Logger is for logging only
4 class Logger
5 {
6    public:
7       Logger(const string& name,const string& arguments = ""s):
8          m_name { name },m_arguments { arguments }
9       {

10          if constexpr (loggingActive)
11          {
12             string indentation(++m_activeFunctions,'>');
13             cout << indentation << ' '
14                  << m_name << ' '

– 277 –



15                  << m_arguments << endl;
16          }
17       }
18       ~Logger()
19       {
20          if constexpr (loggingActive)
21          {
22             string indentation(m_activeFunctions--,'<');
23             cout << indentation << ' '
24                  << m_name << ' '
25                  << m_arguments << endl;
26          }
27       }
28    private:
29       static inline size_t m_activeFunctions { 0 };
30       const string m_name { },
31                    m_arguments { };
32 };

Listing 159: EC.cpp – Logger class

First  there  is  the  global  constant  loggingActive,  which  is  of  type  bool and  is
initialized  with  false.  false means  that  no  logging  output  is  generated.  If
loggingActive is initialized to true, logging output is generated as intended.

New is the declaration with constexpr. constexpr means that the declared object is
fully evaluated at compile time, i.e.  the compiler computes and knows its value.
Here this is obvious because loggingActive is immediately initialized with a  bool
constant. Any object declared with constexpr is also const, i.e. it cannot be changed
after its declaration. Conversely, this is not necessarily the case, because a  const
object can also be created or become a const object at runtime. In the following it
becomes clear why this is important.

The  purpose  of  the  Logger class  is  to  provide  information  about  entering  and
exiting a function, outputting the name of the function and the current values of its
parameters. Depending on the nesting level of the function calls, the output is to be
indented accordingly. For the indentation when entering a function the > character
is to be used, for the indentation when leaving a function the < character.

The  Logger class has three  private data members, namely a so-called  static data
member Logger::m_activeFunctions of  type  size_t,  which contains  the current
number of exemplars of Logger (it corresponds to the number of active functions on
the call stack), and two ordinary const data members of type std::string, namely
Logger::m_name and Logger::m_arguments.

Exemplars of Logger can be created multiple times in different places of a program.
Since the intended indentation of logging messages depends on the actual number
of exemplars of Logger, the number of exemplars must be tracked. This number is
valid only per  class,  not  per  exemplar.  Declaring a data  member of a  class as
static has the effect that the data element exists only once per  class.  One can
think of it as being bound to the class itself, but not to an exemplar. Thus, static
inline size_t m_activeFunctions { 0 }; declares  Logger::m_activeFunctions

– 278 –



as a data member that exists in the Logger class, but not in its exemplars. Of course,
a static class variable can be accessed from anywhere in the class, but it is always
the same class variable. The additional use of inline allows the static data element
to be initialized in the class at the point where it was declared, here with { 0 }.

Logger has only two  public methods, namely a constructor and a destructor. The
constructor takes two parameters, name and arguments, which are used to initialize
the member variables  Logger::m_name and  Logger::m_arguments.  There is also a
default value for the parameter arguments, namely the empty string "". So to log a
function without parameters, an exemplar of  Logger can be created by specifying
only the name of the function without arguments.

The  first statement in the constructor  is if constexpr (loggingActive). This is a
variant of if that is evaluated at compile time. Therefore, the following if statement
is preserved if  loggingActive is  true.  The if condition itself is eliminated in this
case.  That  is,  the  result  of  if  constexpr  (true)  someStatement; is  simply
someStatement;. If loggingActive is false, neither the condition nor the dependent
statement  will  be  present  in  the  compiled  code,  i.e.  if  constexpr  (false)
someStatement; becomes the empty statement ;. The same technique is used in the
destructor. Thus, if  loggingActive is  false, no code is generated by the compiler
other than initializing and destroying the data members of a logger exemplar. If the
compiler  performs very aggressive optimizations,  it  is  even conceivable that the
generation of logger  exemplars is omitted altogether because they are not used in
the program at all.

If loggingActive is true, the std::string indentation is generated and initialized
with  Logger_m_activeFunctions repeats  of  '>' by  calling  the  so-called  fill
constructor of  std::string.  Before  this,  Logger::m_activeFunctions is
incremented  by  one.  This  has  the  effect  that  indentation level  1  is  output  with
exactly one trailing '>'.

The  next  statement  outputs  the  contents  of  indentation followed  by  a  space,
Logger::m_name followed by a space, and Logger::m_arguments followed by a new
line.

The implementation of the destructor is parallel to that of the constructor. Since the
corresponding function is  exited,  Logger::_m_activeFunctions is decremented by
one after initializing the indentation, and '<' is used as a terminator to indicate that
the function is left.

Listing 160 illustrates the purpose and use of Logger. The main() and factorial()
functions  declare  exemplars of  Logger.  When  the  program  is  compiled  and
executed, it asks for a number to calculate the factorial. It then reports the calls to
main() and the recursive factorial() function. The definition of the Logger class is
exactly the same as in Listing 159, so it is not shown again.

– 279 –



1 // LoggerDemo.cpp by Ulrich Eisenecker, January 5, 2024
2 
3 #include <iostream>
4 #include <string>
5 #include <cstdint> // Because of intmax_t
6 
7 using namespace std;
8 
9 constexpr bool loggingActive { false };

10 
11 // Logger is for logging only
12 class Logger
13 {
14    public:
15       Logger(const string& name,const string& arguments = ""s):
16          m_name { name },m_arguments { arguments }
17       {
18          if constexpr (loggingActive)
19          {
20             string indentation(++m_activeFunctions,'>');
21             cout << indentation << ' '
22                  << m_name << ' '
23                  << m_arguments << endl;
24          }
25       }
26       ~Logger()
27       {
28          if constexpr (loggingActive)
29          {
30             string indentation(m_activeFunctions--,'<');
31             cout << indentation << ' '
32                  << m_name << ' '
33                  << m_arguments << endl;
34          }
35       }
36    private:
37       static inline size_t m_activeFunctions { 0 };
38       const string m_name { },
39                    m_arguments { };
40 };
41 
42 intmax_t factorial(intmax_t n)
43 {
44    Logger log { "factorial",to_string(n) };
45    if (n == 0)
46    {
47       return 1;
48    }
49    else
50    {
51       return n * factorial(n - 1);
52    }
53 }
54 
55 int main()
56 {
57    Logger log { "main"s };
58    intmax_t n;
59    cin >> n;
60    cout << factorial(n) << endl;
61 }

Listing 160: ec/LoggerDemo.cpp (excerpt)

The  to_string() function  converts  an  integer  value  to  a  std::string and  has
already been introduced.

– 280 –



Figure 66 shows an example dialog with logging enabled calculating the factorial of
5. The user input is formatted in blue font.

> main 
5 
>> factorial 5 
>>> factorial 4 
>>>> factorial 3 
>>>>> factorial 2 
>>>>>> factorial 1 
>>>>>>> factorial 0 
<<<<<<< factorial 0 
<<<<<< factorial 1 
<<<<< factorial 2 
<<<< factorial 3 
<<< factorial 4 
<< factorial 5 
1 
< main 

Figure 66: Program execution with logging enabled

It should be mentioned that there are several libraries and frameworks for logging
in C++. To spare a more comprehensive introduction, an own implementation of a
very specific and lightweight Logger class was chosen instead.

6.5.3. toupper() Function
Listing 161 shows the definition of a small helper function that converts lowercase
ASCII  letters  contained  in  the  std::string passed  as  an  argument  to  the
corresponding uppercase letters and returns the result. The implementation of this
function  does  not  recognize  other  character  encodings.  Therefore,  its  scope  is
limited  to  the  ec/EC.cpp file.  It  should  be emphasized  that  toupper(string) and
toupper(char) are two different functions that have the same name due to function
overloading.

1 // Converts lower cases to upper cases in ASCII character set
2 [[nodiscard]] string toupper(string s)
3 {
4    for (char& c : s)
5       c = toupper(c);
6    return s;
7 }

Listing 161: EC.cpp – toupper() function

– 281 –



6.5.4. LegalAnswers Class
Listing 162 shows the LegalAnswers class. Its first data member is an instantiation
of the container template  std::vector<> for type  std::string named  m_answers.
Its second data member,  m_active, is of type bool and is initialized to  false. Why
this is important will be explained later.

1 class LegalAnswers
2 {
3    public:
4       [[nodiscard]] size_t size() const
5       {
6          return m_answers.size();
7       }
8       bool add(const string& answer)
9       {

10          m_answers.push_back(answer);
11          return true;
12       }
13       void setActive()
14       {
15          m_active = true;
16       }
17       [[nodiscard]] bool isActive() const
18       {
19          return m_active;
20       }
21       [[nodiscard]] bool isLegal(const string& answer) const
22       {
23          if (!isActive())
24          {
25             return true;
26          }
27          else
28          {
29             return find(m_answers.begin(),m_answers.end(),answer) != 
30                         m_answers.end();
31          }
32       }
33       void output() const
34       {
35          if (m_answers-empty())
36          {
37             return;
38          }
39          for (const auto& element : m_answers)
40          {
41             cout << element << endl;
42          }
43       }
44       void output(ostream& os) const
45       {
46          if (m_answers.empty())
47          {
48             return;
49          }
50          os << "legalanswers are "s;
51          for (const auto& element : m_answers)
52          {
53             os << element << ' ';
54          }
55          os << "*\n"s << endl;
56       }
57    private:

– 282 –



58       vector<string> m_answers;
59       bool m_active { false };
60 };

Listing 162: EC.cpp – LegalAnswers class

The LegalAnswers::size() member function simply calls vector<string>::size()
for  its  LegalAnswers::m_answers data  member,  i.e.  it  forwards this  message.
Alternatively, the free function template  size<>() could be called, which in turn
also calls vector<>::size(). The size<>() function template is overloaded with the
same semantics for other container templates as well.  The  LegalAnswers::add()
method  adds  the  argument  answer of  type  std::string to
LegalAnswers::m_answers by calling m_answers.push_back(answer);. The member
function vector<>::push_back() inserts its argument at the end of the vector<>.

There are two important aspects to note here. First, answer is not itself inserted into
the  vector<>.  Rather,  it  is  copied and this  copy becomes the last element of  the
vector<>. Second, when a vector<> is created it is initialized with a default capacity
of elements.

When the insertion of a new element exceeds the actual capacity of a vector<>, the
vector<> automatically  grows  so  that  the  new  element  can  be  safely  inserted.
Therefore,  LegalAnswers::add() can never fail and always returns  true.  For that
reason, one could argue that LegalAnswers::add() should return void. To support
ignoring the return value of the function, it is not prefixed with [[nodiscard]]. This
way it can be called as if it were returning void. However, the return type bool was
chosen intentionally. In a future revised version of ec/EC.cpp, it would be advisable
to  use  a  different  container  template  that  prevents  duplicate  entries,  e.g.
std::set<>. In a set<>, elements occur at most once. Unlike a mathematical set, a
set<> is internally ordered, which allows fast searching of elements. Before adding
a new answer, it should be checked if the value of  answer has already been set. If
this is the case, the member function should return false to indicate this problem.
This would allow a duplicate answer to be treated as a knowledge base error, and at
least an appropriate warning should be issued. ec/EC.cpp is only implemented to be
fully ESIE™ compliant, which also does not check for this error.

When loading a knowledge base,  LegalAnswers::setActive() must  be called as
soon as a LEGALANSWERS rule starts. This method sets LegalAnswers::m_active to
true,  indicating  that  a  LEGALANSWERS rule  has  occurred.
LegalAnswers::isActive() returns the current value of  LegalAnswers::m_active.
This can be used to query whether a LEGALANSWERS rule has already been found.
This option is used in LegalAnswers::isLegal().

If no LEGALANSWERS rule is present, LegalAnswers::isActive() returns false. In
this case, the LegalAnswers::isLegal() method returns true because any answer is
acceptable. Otherwise, the LegalAnswers::isLegal() method returns the result of

– 283 –



the  answer  search  in  LegalAnswers::m_answers.  This  enables  the  inherently
incorrect behavior of ESIE™ to start an infinite loop when no values are specified in
the LEGALANSWERS rule (see requirement with ID 1.5.7).

The algorithm std::find<>() is a function template that takes three arguments. The
first argument is an iterator pointing to the first element of the search range, its
second argument is an iterator pointing to the position immediately after the last
element of the search range, and the third parameter is the value being searched
for. An iterator can be thought of as a pointer to an element of a container template.
As such, it can be dereferenced to get the corresponding element. But unlike raw
pointers  in  C++,  the  programmer  does  not  have  to  worry  about obtaining  or
disposing of memory. m_answers.begin() returns an iterator that points to the first
element  of  LegalAnswers::m_answers.  The  public  member  function
container<>.begin() is  provided  by  most  of  the  STL  container  templates.
m_answers.end() returns an iterator pointing to the position immediately after the
last element of LegalAnswers::m_answers. It cannot point to the last element of a
vector<>, as this would prevent empty vectors. Therefore, this particular position
immediately  after  the  last  element  is  required,  as  it  also  applies  to  an  empty
container.  find<> returns an iterator pointing to the element if it is found, and to
vector<>.end() otherwise.  For  this  reason,  it  is  checked whether
find(m_answers.begin(),m_answers.end(),answer)  is  equal  to
m_answers.end().  The  result  of  this  comparison  is  immediately  returned  as  the
result of the member function.

The  LegalAnswers::output() member  function  has no  arguments  and  is  called
while the knowledge base is being processed, i.e. during a  consultation.  When the
user enters an invalid answer, all legal answers are output, each on a separate line.
This is exactly what this method does.

The LegalAnswers::output() member function, which takes a reference to ostream
as  an  argument,  does  not  implement  a  requirement.  It  was  introduced  and
implemented in the context of testing the loading of a knowledge base. How can one
be sure that a knowledge base is loaded correctly? One might be able to check this
with a debugger by inspecting the contents of the various relevant variables, but
only for small knowledge bases and in a cumbersome way. But there is a solution!

After loading a knowledge base, its contents can be output to a text file in a valid
knowledge  base  format.  Unfortunately,  the  original  knowledge  base  and  the
exported knowledge base can differ significantly. This is because the exact order of
the different rules, their formatting, and the use of lower and upper case letters are
lost during loading.

However, the idea is to reload the exported knowledge base and export it a second
time. After that, the first and the second export must be identical. If this is not the
case, either the input or the output may be incorrect. If the code that produces the

– 284 –



output has been carefully checked, the likelihood that the errors are in the code that
implements  the  input  increases.  Input  and  output  of  a  knowledge base  are not
symmetrical  in terms of format and implementation. While it is relatively difficult
to implement all the methods required for input, it is  relatively easy to implement
the necessary output methods. For this reason, corresponding output methods were
added to all objects relevant to the knowledge base. In fact, some errors could be
found by reproducing the loaded knowledge bases through their output, but this
will not be discussed further here.

LegalAnswers::output(ostream& os) first checks if the data member m_answers is
empty. If yes, it returns immediately. Otherwise, a range-based for loop is used to
output each answer to os, followed by a single space. Finally, a terminating asterisk,
'*', is output to os.

Overall,  LegalAnswers is  a  lightweight  class  that  adds  little  functionality  to  the
std::vector<> container template. Using a  vector<> instead of  LegalAnswers and
implementing the additional functionality in place would have been a viable option.
Doing  so would  have  been  one  less  class  to  write,  understand,  and  maintain.
Nevertheless, the decision was made to implement it as a separate class, creating a
domain-specific abstraction of the solution space and increasing the intentionality
of the code.

6.5.5. Variables Class
Listing  163 shows  the  implementation  of  the  Variables class.  It  manages  all
variables that occur in the rules of a knowledge base.

1 class Variables
2 {
3    public:
4       [[nodiscard]] size_t size() const
5       {
6          return m_variables.size();
7       }
8       bool add(const string& variable)
9       {

10          for (const auto& element : m_variables)
11          {
12             if (element.first == variable)
13             {
14                return false;
15             }
16          }
17          m_variables.push_back(make_pair(variable,""s));
18          return true;
19       }
20       bool set(const string& variable,const string& value)
21       {
22          for (auto& element : m_variables)
23          {
24             if (element.first == variable)
25             {
26                element.second = value;

– 285 –



27                return true;
28             }
29          }
30          return false;
31       }
32       [[nodiscard]] string get(const string& variable) const
33       {
34          for (const auto& element : m_variables)
35          {
36             if (element.first == variable)
37             {
38                return element.second;
39             }
40          }
41          return ""s;
42       }
43       void reset()
44       {
45          for (auto& element : m_variables)
46          {
47             element.second = ""s;
48          }
49       }
50       void output(ostream& os) const
51       {
52          for (const auto& element : m_variables)
53          {
54             os << element.first << " is "s 
55                << element.second << endl;
56          }
57       }
58    private:
59       vector<pair<string,string>> m_variables;
60 };

Listing 163: EC.cpp – Variables class

A variable is a simple concept that combines a name and a value, both of which are
strings.  This  does  not  justify  its  implementation  as  a  domain-specific  concept.
Fortunately, the C++ standard library provides the struct template std::pair<> that
can be used to represent a variable, i.e. pair<string,string>. Assuming element is
a variable of type pair<typeA,typeB>, element.first is the first pair component of
typeA,  and  element.second is the second pair component of  typeB.  There are no
isolated variables in the program, they are all managed in a particular  store. The
Variables class  serves  exactly  this  purpose.  It  has  only  one  member,  namely
m_variables of  type  vector<pair<string,string>>.  The  vector<> container
template was chosen because the requirements and various tests  showed that a
similar data structure is likely to be ubiquitous in ESIE™. In particular, the order in
which variables occur is preserved by storing them in a vector<>.

Having completed the implementation of the cover version of ESIE™, it appears that
this  feature  is  probably  not  relevant.  In  a  revised  version,  a  more  appropriate
container template could be used, for example std::map<>. A map<> associates keys
and values. Each key-value pair is stored internally as a std::pair<>. The name of a
variable would act as the key, and the value associated with the key would act as the

– 286 –



value  of  the  variable.  A  std::map<> automatically  ensures  that  there  are  no
duplicates of key-value pairs.

Next, the methods of Variables are discussed.

Variables::size() simply forwards the call to  vector<>::size() and returns its
result.

Variables::add() adds  the  parameter  variable to  Variables::m_variables.  To
avoid  duplicate  variables,  a  range-based  for  loop  is  executed  first,  which
immediately returns false if the variable already exists. It should be noted that the
for loop  iterates  over  elements  of  type  pair<string,string>.  Therefore,
element.first refers to the name of a variable, while element.second refers to its
value.  If  the for  loop  ends  without  returning,  the  variable  is  added  by  calling
m_variables.push_back(make_pair(variable,""s));.

The  std::make_pair<>() function  template  is  a  helper  function  that  returns  a
pair<> that  is  correctly  instantiated  with  the  types  of  its  two  arguments,  here
pair<string,string>.  Subsequently,  the method returns  true.  Variables::add()
returns a bool value, but it  has no [[nodiscard]] attribute. That is, the caller can
check whether a new variable was successfully stored or not, but the return value
can also be ignored.

Variables::set() sets variable to value, both of which are passed as parameters.
Again,  a  range-based  for  loop  is  used  to  search  for  variable in
Variables::m_variables. If it is found, its value is set by executing element.second
= value;. After that, the loop is exited by returning true. If the loop ends and the
variable is not found, nothing is set and the method returns false. In this way, only
variables that exist in the variable store can be assigned a value. Whether this could
be done successfully  is indicated by the return value of the method. If the caller
does not care about the assignment to a non-existing variable, the return value can
be ignored  because the member function is not prefixed with the  [[nodiscard]]
attribute. The method could also be designed differently. By assigning a value to a
non-existent variable, the variable could be implicitly stored along with its value in
Variables::set(). This would always succeed, so no return value would need to be
specified. Such a construction could be useful in a different context of use.

Variables::get() retrieves  the  value  of  variable passed  as  a  parameter  and
returns it as a value of type std::string. Again, a range-based for loop searches for
variable.  If  it  is  found, its value is returned by  return element.second;.  If  the
variable has not been assigned a value before, element.second is an empty string. If
the variable cannot be found, the method must still return a  string. Therefore, it
returns  an  empty  std::string,  namely  ""s.  This  return  value  means  that  the
variable  passed  to  Variables::get() has  not  been  assigned  yet.  Actually,  this  is
wrong,  because  the  variable  does  not  exist.  This  can  be  tolerated  only  because

– 287 –



variables and values are always of type std::string, and the interpretation of the
return value ""s as either variable has no value or variable does not exist does not
matter in the context of the program. Other application contexts may require more
precise solutions.

Since  the  return  value  of  this  method  must  not  be  ignored,  the [[nodiscard]]
attribute is prepended to the method.

Variables::reset() is  a  member  function  added  later.  When  a  consultation  is
finished, the user can enter  GO again to start a new consultation. In this case all
variable  values  must  have  been  reset  to  the  empty  string.  Otherwise,  the
consultation would  not  be  executed  correctly.  Therefore,  Variables::reset() is
called immediately after a consultation is finished.

Variables::output() outputs all variables and their associated values to os passed
as ostream reference. This way it is possible to get a list of all variables declared in
the knowledge base rules with their current values. This is useful for monitoring the
loading  and processing  of  the  knowledge  base.  This  method is  not  relevant  for
exporting  a  knowledge  base  to  a  text  file,  because variables  are  not  explicitly
declared in a knowledge base!

Like  LegalAnswers,  Variables is  a very lightweight class.  It  can be considered a
wrapper  that  adds  little  functionality  to  Variables::m_variables.  It  could  have
been implemented in its entirety directly in the KnowledgeBase class. Its advantage
is that it introduces an intentional name for an important domain-specific concept.
This is different for variable. Since there are no isolated variables in the program, it
would not be justifiable to introduce a Variable class for it just to give it a domain-
specific flavor.

6.5.6. Pending Declarations
Sometimes it is  necessary for objects of different types to use each other, e.g.  by
passing them as parameters to member functions. In C++, however, only types that
are already known to the compiler can be used in another declaration.

In  ec/EC.cpp this situation occurs three times: Each of the classes  Questions,  Rule
and  Rules uses the class  KnowledgeBase in one of its methods. Therefore, a a so-
called pending declaration of KnowledgeBase is required before the Questions class
is defined, namely class KnowledgeBase;.

To  better  understand  this  problem  and  its  solution,  Listing  164 illustrates  this
situation  with  the  two  classes  Ping and  Pong which have  methods  that  take
exemplars of each other as parameters.

1 // PingPongImpossible.cpp by Ulrich Eisenecker, August 31, 2021
2 // Caution: This program does not compile!

– 288 –



3 
4 class Ping
5 {
6    public:
7       void method(Pong& p,int n)
8       {
9          if (n > 0)

10          {
11             p.method(*this,n - 1);
12          }
13       }
14 };
15 
16 class Pong
17 {
18    public:
19       void method(Ping& p,int n)
20       {
21          if (n > 0)
22          {
23             p.method(*this,n - 1);
24          }
25       }
26 };
27 
28 int main()
29 {
30    Ping ping;
31    Pong pong;
32    ping.method(pong,3);
33 }

Listing 164: PingPongImpossible.cpp

When compiling, the compiler reports an error in line 7 because  Pong has not yet
been defined. The problem can be solved by introducing the name Pong and telling
the compiler that it is a  class before declaring the Ping class. This is achieved by
the pending declaration, which can be seen in Listing 165 in line 3.

1 // PingPong.cpp by Ulrich Eisenecker, August 31, 2021
2 
3 class Pong;
4 
5 class Ping
6 {
7    public:
8       void method(Pong& p,int n);
9 };

10 
11 class Pong
12 {
13    public:
14       void method(Ping& p,int n)
15       {
16          if (n > 0)
17          {
18             p.method(*this,n - 1);
19          }
20       }
21 };
22 
23 void Ping::method(Pong& p,int n)
24 {
25    if (n > 0)
26    {

– 289 –



27       p.method(*this,n - 1);
28    }
29 }
30 
31 
32 int main()
33 {
34    Ping ping;
35    Pong pong;
36    ping.method(pong,3);
37 }

Listing 165: PingPong.cpp

After that,  the program still  won't  compile if  the  definition of  Ping::method() is
included in the definition of Ping, as it is the case in Listing 164. The reason for this
is that the compiler only knows that Pong is a class, but it knows nothing about the
size of  Pong and its members, which are accessed in  Ping::method().  Therefore,
only the declaration of  Ping::method() must be included in the definition of  class
Ping. Its definition must come after the definition of the class Pong, which is the case
in Listing 165.

Of course, this problem does not occur in the definition of Pong::method(), since the
definition  of  Ping is  already  available  to  the  compiler  when  Pong::method() is
compiled.

6.5.7. Questions Class
The  Questions class  manages  individual  questions  that  ask  for  the  value  of  a
variable.  Isolated  questions  do  not  occur  in  the  program.  Therefore,  it  is  not
necessary to define an extra Question class. A question consists of a variable and a
subject. The subject is the text of the question to be asked to the user. These two
components can be easily  mapped to the utility  template  std::pair<>.  The only
data  element  of  Questions is  Questions::m_questions,  which  is  of  type
vector<pair<string,string>>. Again, the container template std::map<> would be
more appropriate for managing questions. In this case, the variable name would act
as the key and the topic as the value. Besides efficiency, another argument for using
map<> is that it automatically ensures that there is only one question per variable.
On  the  other  hand,  map<> uses  an  internal  sorting  for  its  elements,  while  the
elements of a std::vector<> are sorted externally. Therefore, vector<> was chosen
to implement this first cover version because it maintains the order of the questions
in the knowledge base.

Let element be of type pair<string,string>>. Then element.first corresponds to
the name of the variable and element.second to the subject of the question. Listing
166 shows  the  definition  of  Questions.  It  should  be  noted  that  the  separate
definition of  Questions::ask() in the source code of  ec/EC.cpp appears after the

– 290 –



definition of the  KnowledgeBase class, because it  calls methods of  KnowledgeBase
that are not yet known when Questions is defined.

1 class Questions
2 {
3    public:
4       [[nodiscard]] size_t size() const
5       {
6          return m_questions.size();
7       }
8       bool add(const string& variable,const string& subject)
9       {

10          for (const auto& element : m_questions)
11          {
12             if (element.first == variable)
13             {
14                return false;
15             }
16          }
17          m_questions.push_back(make_pair(variable,subject));
18          return true;
19       }
20       void output(ostream& os) const
21       {
22          for (const auto& element : m_questions)
23          {
24             os << "question "s << element.first << " is\n\""s
25                << element.second << "\"\n"s << endl;
26          }
27       }
28       bool ask(KnowledgeBase& kb,const string& variable);
29    private:
30       vector<pair<string,string>> m_questions;
31 };
32 // …
33 bool Questions::ask(KnowledgeBase& kb,const string& variable)
34 {
35    Logger log("Questions::ask"s,variable);
36    for (const auto& question : m_questions)
37    {
38       if (question.first == variable)
39       {
40          string answer { };
41          bool ok { false };
42          do
43          {
44             cout << question.second << endl;
45             getline(cin,answer);
46             answer = toupper(answer);
47             if (kb.isLegalAnswer(answer))
48             {
49                kb.setVariable(question.first,answer);
50                kb.report("It has been learned that "s + question.first +
51                          "\nis "s + answer + "."s);
52                ok = true;
53             }
54             else
55             {
56                cout << "I'm sorry, but your answer is not acceptable.\n"s
57                     << "Please be sure you are typing the answer you "s  
58                     << "want fully and correctly,\n"s
59                     << "and please choose your answer from one of these:"s
60                     << endl;
61                kb.outputLegalAnswers();
62             }
63          } while (!ok);

– 291 –



64          return true;
65       }
66    }
67    return false;
68 }

Listing 166: EC.cpp – Questions class

Questions::size() simply forwards the call to  vector<>::size() and returns its
result.

Questions::add() adds a question consisting of variable and topic, both passed as
parameters.  The range-based for  loop checks  if  a  question for  variable already
exists in Questions::m_questions. If this is the case, the loop and method are exited
with false.  Otherwise,  the  question  is  added  after  the  loop  ends  with
m_questions.push_back(make_pair(variable,subject));.  After  that,  the  method
returns true. Since Questions::add() returns a boolean value, the caller can check
whether the question could be added or not.  The method  has no [[nodiscard]]
attribute. Therefore its return value can be ignored.

In  the  Questions  Section, it  was analyzed  how  ESIE™ behaves  when  there  are
multiple  questions  for  a  variable  and  the  number  of  questions  exceeds  the
documented limit (requirements 1.7.6, 1.7.7 and 2.1.17).  It  must be clearly stated
that  the  above  implementation  of  Questions::add() violates  requirement  1.7.6.
Obviously, requirement 1.7.6 does not make sense. This creates a conflict. There are
three ways to resolve this:

1. Modify the implementation of Questions::add() to match requirement 1.7.6.
2. Modify requirement 1.7.6 to match the implementation of Questions::add().
3. Keep  requirement  1.7.6  and  the  implementation  of  Questions::add(),

document the deviation and resolve it in a future version of ec/EC.cpp.

The first option is easily implemented by the definition of Questions::add() shown
in Listing 167.

1 bool Questions::add(const string& variable,const string& subject) 
2 { 
3    m_questions.push_back(make_pair(variable,subject)); 
4    return true; 
5 } 

Listing 167: Questions::add(), which fully complies with requirement 1.7.6

The second option is  also  easy to perform, as Table  27 shows.  The requirement
identifier is changed from 1.7.6 to 1.7.6r to indicate that it is a revised version. The
text of the previous version is formatted in italics and highlighted in light blue.

ID Topic Subtopic Description Source
1.7.6r Syntax QUESTION Although  ESIE™ records  questions  without  checking  for

complete  duplicates  or  multiple  but  different  questions,
the prototype only accepts a maximum of one question per
variable.  If  there  are  multiple  questions  for  a  variable,
only the first of them is recorded.

ESIE™,
100SQ.KB

– 292 –



Table 27:Requirement 1.7.6 revised

In principle, a knowledge base with multiple questions for the same variable should
be  considered  inconsistent.  In  practice,  at  least  a  warning  should  be  issued  to
inform the user.

The third option does not seem attractive. Why not just decide between the first two
options?

However, there  is  requirement  1.7.7,  which  states  that  –  if  there  are  multiple
questions for a variable – they are all asked in the order in which they appear in the
knowledge  base.  This  has  the  consequence  that  the  user  can  enter  a  different
answer to  the question each time.  Only  the last  answer  is  relevant!  Querying a
knowledge base in this way is also inconsistent. Interestingly, the implementation of
ec/EC.cpp, as it is, does not show the same behavior. As soon as a value is assigned to
a  variable,  a  subsequent  assignment  is  no  longer  possible,  in  particular  an
assignment of another value does not take place. It can be speculated that the stack
for tracking rules that assign a value to a particular variable and questions that ask
for the value of a particular variable (requirement 3.3.10) is the basis for realizing
this  behavior.  However,  it  was already decided not to implement a stack.  It  was
replaced  by  the  implicitly  built  function  call  stack  in  recursive  and  indirect
recursive  function  calls.  So following  the  first  option  consistently  would  mean
further changes to  the actual  program.  But  choosing the second option also has
consequences. Fixing inconsistent or erroneous requirements should not be done in
isolation. Therefore, under the second option, it would make sense to add another
requirement for reporting multiple occurrences of questions related to the same
variable. In addition, the inference process should be cleaned up. This would also
clarify what other deficiencies  may exist with regard to the inference process and
how they can be remedied.

Choosing  one  of  the  first  two  options  means  either  living  with  more  bugs  or
investing a lot more work to fix everything, depending on the choice made. In this
way,  the  completion of  the  work on the  first  cover  version of  ESIE™ would be
delayed. For this reason, the third option is chosen here.

Questions::output() outputs the questions to a text  file in a format valid for a
knowledge base.

The  member  function  Questions::ask() has  two  parameters,  a  reference  to  a
KnowledgeBase named  kb and a reference to a  const string named  variable. Its
purpose is to find a question related to variable and ask it. When a related question
is found and asked, the knowledge base is asked to assign the answer to the variable
by kb.setVariable(question.first,answer);. After that the method returns true.
If no question for variable can be found, false is returned. This is the rough sketch
of what happens in this method.

– 293 –



To search for a question for variable, a range-based for loop is used. To access the
individual  questions as values,  the variable  question is  used. If  question.first
equals variable, a matching question is found. In this case, the variable answer of
type std::string is declared in the corresponding compound statement. Next, the
bool variable  ok is declared and initialized with  false. Now  a do loop is started,
which is executed as long as  ok is  false,  that is,  while (!ok).  In the compound
statement of the do loop, the subject, i.e. question.second, is sent to the output and
the user's answer is determined by calling getline(cin, answer);. std::getline()
is a free function that takes an input stream as the first argument and a variable of
type  std::string as  the second argument.  There  is  a  third  argument  to  pass  a
delimiter character that signals the end of the input. It has the default value '\n'.

getline() reads characters from the input stream, here cin, and stores them in the
string variable passed by reference, here answer, as long as the delimiter is not read,
here '\n'. Character extraction stops when the delimiter is read or the end of the
file is reached. The delimiter is extracted, but not stored in the string reference. The
getline() function  has  a big  advantage.  It  is  not  possible  to  provoke  a  buffer
overflow by entering so many characters  that  the storage capacity  of  the string
reference passed as parameter is exceeded.

Since the user can also enter lowercase letters, any lowercase letters contained in
the response must be converted to uppercase. Then it must be checked whether the
user has entered a legal answer. This is delegated to a method of the KnowledgeBase
by calling  kb.isLegalAnswer(answer).  Questions::add() cannot  check  this  itself
because  Questions does  not  have  access  to  LegalAnswers.  The  only  member
variable of LegalAnswers is managed exclusively by KnowledgeBase. If the answer is
legal,  it  must  be assigned to  the  variable.  As  mentioned earlier,  this  is  done by
kb.setVariable(question.first,answer);.  After that,  a yet unknown method of
KnowledgeBase is  called,  namely  kb.report().  If  TRACE ON is  entered before  a
consultation starts,  KnowledgeBase::report() will  output the appropriate tracing
messages. After that, ok is set to true, which ends the execution of the do loop. If the
answer given by the user is not legal, an appropriate message will be sent to output.
By  calling  kb.outputLegalAnswers() the  user  will  be informed  about  the  legal
answers.

Incidentally,  a  simple  way to mimic  the  actual  behavior  of  ESIE™ when asking
questions  (requirement  1.7.7)  would  be to  not  end the  for  loop and method by
returning  true. Nevertheless, it should be recorded whether at least one question
was asked, because only in this case the method should return true.

– 294 –



6.5.8. Rule Class
Rule is a domain-specific class that implements the domain concept IF rule. Listing
168 shows its definition as well as the implementation of  Rule::prove(), which is
defined outside the class after the definition of KnowledgeBase.

1 class Rule
2 {
3    public:
4       bool addCondition(const string& variable,const string& value)
5       {
6          for (const auto& element : m_conditions)
7          {
8             if (element.first == variable)
9             {

10                return false;
11             }
12          }
13          m_conditions.push_back(make_pair(variable,value));
14          return true;
15       }
16       bool addConclusion(const string& variable,const string& value)
17       {
18          if (m_variable != ""s || m_value != ""s)
19          {
20             return false;
21          }
22          m_variable = variable;
23          m_value = value;
24          return true;
25       }
26       void output(ostream& os) const
27       {
28          // output if-part
29          os << "IF"s;
30          container_t::size_type count { 0 };
31          for (const auto& element : m_conditions)
32          {
33             os << " "s << element.first << " IS "s << element.second;
34             if (++count < m_conditions.size())
35             {
36                os << "\nand"s;
37             }
38          }
39          // output then-part
40          os << "\nthen "s << m_variable << " is "s << m_value << '\n' << endl;
41       }
42       [[nodiscard]] bool isActive() const
43       {
44          return m_active;
45       }
46       void reset()
47       {
48          m_active = true;
49       }
50       bool prove(KnowledgeBase& kb,const string& variable);
51    private:
52       using container_t = vector<pair<string,string>>;
53       container_t m_conditions;
54       string m_variable { },
55              m_value { };
56       bool m_active { true };
57 };
58 // …

– 295 –



59 bool Rule::prove(KnowledgeBase& kb,const string& variable) 
60 {
61    Logger log("Rule::prove"s,variable);
62    if (variable != m_variable)
63    {
64       return false;
65    }
66    for (const auto& condition : m_conditions)
67    {
68       string value { kb.getValue(condition.first) };
69       if (value == ""s)
70       {
71          if (!kb.prove(condition.first) && !kb.askValue(condition.first))
72          {
73             return false;
74          }
75          value = kb.getValue(condition.first);
76          kb.report("Currently looking for: "s + variable + "."s);
77       }
78       if (value != condition.second)
79       {
80          return false;
81       }
82    }
83    kb.setVariable(m_variable,m_value);
84    kb.report("Currently looking for: "s + variable + "."s);
85    kb.report("It has been learned that "s + m_variable +
86              "\nis "s + m_value + ‘.’);
87    m_active = false;
88    return true;
89 }

Listing 168: ec/EC.cpp – Rule class

It introduces a new language feature, namely the  using declaration. In the  private
part of the class,  using container_t = vector<pair<string,string>>; declares
container_t as an alias for the type vector<pair<string,string>>. A type alias
is just another name for a type, much like a reference to a variable is just another
name for that variable. The alias and the original are indistinguishable. They are
identical  in  every  respect.  The  scheme  of  a  using  declaration  is  using  alias =
original;. The alias is always to the left of = and the original is to the right of it. Why
is it done this way now? Previously, any member variable that was a container was
defined with the  original  type name.  In  these  earlier cases,  the  type name was
always used only once.  But in  Rule,  the type name is  needed a second time,  in
Rule::output(). Here the member type vector<>::size_type is used to define the
local  variable  count.  If  the  same  complicated  type  name
vector<pair<string,string>> had to be used repeatedly, this would be a potential
source  of  errors.  If,  for  whatever  reason,  std::vector<> were  replaced  with  a
different container template, this change would have to be applied consistently to
every  use  of  the  container  type.  It  is  a  common  mistake  that  these  necessary
changes  are  not  made  everywhere.  By  introducing  a  type  alias  and  using  it
consistently, this type of error is completely eliminated. Of course, one could argue
that std::intmax_t could have been used here instead of container_t::size_type,
but accessing the correct member type is always more appropriate.

– 296 –



The  type  alias Rule::container_t is  used  to  declare  Rule::m_conditions.  This
member variable manages all the conditions that a rule has. A rule must have at
least one condition and may have many more as long as the total number of rule
lines is not exceeded (requirements 1.6.5, 1.6.10 and 3.2.1). The conclusion of a rule
consists of the name of a variable,  Rule::m_variable, and a value,  Rule::m_value,
both of type std::string. If all the conditions of a rule evaluate to true, the rule is
fired,  that  is,  it  executes  its  conclusion,  which assigns  the  value  to  the variable.
Again, a domain-specific concept, namely the conclusion, has no explicit counterpart
in the implementation because it is too lightweight and there are already adequate
means  in  the  solution  space.  Rule::m_active is  not  motivated  by  a  specific
requirement. It was introduced after several knowledge bases had been processed
with logging turned on. This showed that rules that had already been fired could be
re-evaluated when processing the knowledge base. Since the values of the variables
they refer to in the condition cannot be changed in the meantime, they are even
fired again. So the actual overall state of the knowledge base is not changed by this.
Still, it is a waste of time, and there is no guarantee that changes to the inference
process, other components, or methods could change this. Therefore, this flag is set
to false once a rule has been triggered. Before evaluating the conditions of a rule, it
is  first  checked  whether  the  rule  is  still  active,  i.e.  it  must  be  checked whether
Rule::isActive() returns true. If the rule is no longer active, it is excluded from
further processing.

The  Rule::addCondition() method  takes  the  variable and  value parameters
passed as a reference to const of type std::string and stores them as an (elemen-
tary)  condition.  If  there is  already a condition that uses the same  variable,  the
method returns  false, otherwise  true. The implementation of the method should
be easy  to  understand  by  now.  Therefore,  it  will  not  be  explained  further.  The
method can be called multiple times while loading an IF rule, depending on the ac-
tual number of conditions.

The member function  Rule::addConclusion() adds the parameters  variable and
value as a conclusion. If either Rule::m_variable or Rule::m_value is already set,
i.e. has a value other than the empty string, the method returns  false, otherwise
true.  This  method should be called exactly  once  when loading a  rule  from the
knowledge base.

The purpose of Rule::output() is to write a representation of the rule to a text file
using a valid knowledge base format. This will output all conditions as well as the
conclusion. An interesting implementation detail is how the local variable count is
used to determine in the range-based for loop whether to send "\nand" to os before
sending the next condition to os. The challenge is that there must not be an "AND"
after the output of the last condition.

– 297 –



Rule::isActive() allows to query the status of the rule. It returns Rule::m_active.
Its return value is  prefixed with the  [[nodiscard]] attribute, because it would be
nonsensical to call this method and ignore its return value.

The  Rule::reset() method  is  called  after  a  consultation  has  ended  to  set
Rule::m_active back to true, preparing the rule for an optional next consultation.

Rule::prove() is  an  important  part  of  the  knowledge  base  processing.  Its
parameters  are a  reference  to  the  KnowledgeBase named  kb and a  reference  to
const of type std::string named variable. The knowledge base must be passed as
a parameter because a rule does  not have access to the exemplar of  Variables
stored in kb. It also asks kb to prove a variable or to ask for the value of a variable to
assign  values  to  an  unassigned  variable  in  one  of  its  conditions.  It  also  calls
KnowledgeBase::report() to output the desired tracing messages if TRACING ON is
set at the top level.

The following is a step-by-step description of the implementation of Rule::prove().

The first statement creates an exemplar of Logger named log. Since Rule::prove()
can call itself recursively, it can be very instructive to turn on logging and observe
the stack trace of method calls to process the knowledge base. As mentioned earlier,
this  was  essential  to  identify  the  right  places  to  report  the  appropriate  tracing
messages.

Then it  is checked  whether the  rule's  conclusion  concerns variable.  If  not,  the
method returns false. Otherwise, a range-based for loop is started. First, kb is asked
for the value of variable. If its value is equal to the empty string, it means that the
variable has not been assigned yet. In this case, an attempt is made to assign a value
to  it,  either  by  calling  KnowledgeBase::prove() or  by  calling
KnowledgeBase::askValue().  The  corresponding  if  condition  is  formulated  in  a
short  and  concise  way,  namely  if  (!kb.prove(condition.first)  &&  !
kb.askValue(condition.first)),  making use of short-circuit evaluation one more
time. This will be explained in detail below.

kb.prove(condition.first) returns  true if  the  variable  referenced  by
condition.first was  successfully  assigned.  In  this case,  the  entire  if  condition
immediately  becomes false.  This  is  because  true is  negated  by  the  ! operator,
which results in  false. Due to the short-circuit evaluation of the logical And, the
remaining part is not evaluated because the overall result is already known to be
false.  If  kb.prove(condition.first) fails,  kb.askValue(condition.first) is
evaluated. If it returns true, the negation returns false. Thus, the entire condition
evaluates to  false. If both condition parts evaluate to  true,  i.e. both method calls
return false to indicate that the variable cannot be assigned by either proving or
asking, the range-based for loop and Rule::prove() are exited by returning false.

– 298 –



If either proving or asking was successful, the actual value of the variable must be
retrieved.  This  is  done  by  value  =  kb.getValue(condition.first);.  Then  a
corresponding tracing message is sent to the output if TRACE ON was set at the top
level.  Now  it  must  be  checked  if  the  actual  value  of  the  variable  matches  the
expected value in condition.second. If not, the for loop and the method are exited
returning false. This is also an example of short-circuit evaluation of a condition
with parts connected by logical And. Finally, the for loop is terminated. This means
that every condition was evaluated as true. Thus, the entire condition is true, and
the  rule  can  fire,  i.e.,  it  executes  its  conclusion.  Despite  the  somewhat  dramatic
wording, this is simply a request to the knowledge base to set the variable to a value
by  kb.setVariable(m_variable,m_value);.  Again,  two  tracing  messages  are
reported  when TRACE ON was entered at  the top level.  The last  action is  to set
Rule::m_active to false. This prevents the rule from being evaluated again during
the active consultation.

6.5.9. Rules Class
The  Rules class manages the  IF rules contained in a knowledge base. Listing  169
also contains the definition of  Rules::prove(), which is located in the source file
after the definition of the KnowledgeBase class.

1 class Rules
2 {
3    public:
4       [[nodiscard]] size_t size() const
5       {
6          return m_rules.size();
7       }
8       // No check for verbatim or semantic duplicates!
9       void add(const Rule& rule)

10       {
11          m_rules.push_back(rule);
12       }
13       void output(ostream& os) const
14       {
15          for (const auto& element : m_rules)
16          {
17             element.output(os);
18          }
19       }
20       void reset()
21       {
22          for (auto& element : m_rules)
23          {
24             element.reset();
25          }
26       }
27       bool prove(KnowledgeBase& kb,const string& variable);
28    private:
29       vector<Rule> m_rules;
30 };
31 // …
32 bool Rules::prove(KnowledgeBase& kb,const string& variable)
33 {
34    Logger log("Rules::prove"s,variable);

– 299 –



35    kb.report("Currently looking for: "s + variable + "."s);
36    for (auto& rule : m_rules)
37    {
38       if (rule.isActive())
39       {   
40          if (rule.prove(kb,variable))
41          {
42             return true;
43          }
44       }
45    }
46    return false;
47 }

Listing 169: EC.cpp – Rules class

Its  only  data  member  is  Rules::m_rules,  which  is  of  type  vector<Rule>.  The
Rules::size() method  simply  passes  this  request  to  Rules::m_rules.size().
Rules::add() adds a rule that is passed as a reference to const parameter of type
Rule.  No  check  is  made  to  see  if  a  semantically  equivalent  rule  already  exists.
Therefore,  the  rule  is  added  as  the  last  element  to  Rules::m_rules by
m_rules.push_back(rule);.  Since  no  check  is  performed,  this  method  returns
nothing, i.e., its return type is void.

Rules::output() uses a range-based for loop to ask each rule to send itself to the os
text file.

Rules::reset() uses a range-based for loop to ask each rule to reset itself, i.e. set its
Rule::m_active data element to true.

The member function Rules::prove() has two parameters. The first is a reference
to  KnowledgeBase named  kb,  and  the  second  is  a  reference  to  const of  type
std::string named variable. First, an exemplar of Logger named log is declared.
If logging is turned on, the call to and exit from KnowledgeBase::prove() is logged.
Next, a tracing message is emitted if TRACE ON is set. After that, a range-based for
loop is started. If the rule referenced by the loop variable is active, it is requested
with  rule.prove(kb,variable) to assign a value to  variable. If this is successful,
the loop and the method are exited with  return true;. If no rule was found that
assigns a value to  variable, the method returns  false. Since the return value of
type bool is not attributed with [[nodiscard]], the caller can ignore it.

6.5.10. KnowledgeBase Class
KnowledgeBase is the central class and with almost 400 lines makes up about half of
the entire program. For this reason, there is no complete listing of this class. Its data
members and methods are presented in various listings. Listing 170 shows the data
members of KnowledgeBase. As usual, they are all declared as private.

1 class KnowledgeBase
2 {
3    public:

– 300 –



4    // …
5    private:
6       string m_goal;
7       pair<string,string> m_answer;
8       LegalAnswers m_legalAnswers;
9       Rules m_rules;

10       Questions m_questions;
11       Variables m_variables;
12       bool m_tracing { false };
13       size_t m_ruleLines { 0 };
14 };

Listing 170: EC.cpp – Data members of KnowledgeBase class

The first declared data  member is  KnowledgeBase::m_goal of type  std::string. It
implements  the  first  rule  type  mentioned  in  requirement  1.2.50,  namely  GOAL.
Since it is simply the name of a variable, std::string is an appropriate type.

The next data element, KnowledgeBase::m_answer, is of type pair<string,string>.
It  implements  the  second  rule  type  mentioned  in  requirement  1.2.50,  namely
ANSWER. An ANSWER consists of a text and a variable. Of course, both components
could  have  been  declared  as  separate  data  elements,  for  example  string
m_answerText and  string m_answerVariable.  Combining them in a  std::pair<>
emphasizes their cohesion. On the other hand, this has the effect of mapping the
domain-specific  concepts  GOAL  text and  GOAL  variable to  the  unintentional
implementation-specific names  m_answer.first and  m_answer.second.  If  relevant
coding guidelines do not provide guidance on how to decide this, it is a matter of
taste which option is  chosen.  However,  regardless of  the actual  decision,  similar
cases should be decided similarly.

The  third  data  member,  KnowledgeBase::m_legalAnswers of  type  LegalAnswers,
corresponds  to  the  third  rule  type  mentioned  in  requirement  1.2.50,  namely
LEGALANSWERS rule.

The fourth data  member,  KnowledgeBase::m_rules of  type  Rules,  is  not a direct
equivalent of the IF-Rule (requirement 1.2.50), but manages the rules contained in a
knowledge base. A data structure for managing IF-Rules is not explicitly mentioned
in the requirements.

The same is true for the fifth data  member,  KnowledgeBase::m_questions of type
Questions, which is also not a direct equivalent of the QUESTION rule (requirement
1.2.20), since it manages questions contained in a knowledge base.

The domain-specific concept variable is frequently mentioned in the requirements,
but there is no explicit requirement for a data structure to manage variables, which
is the purpose of KnowledgeBase::m_variables of type Variables.

The data member KnowledgeBase::m_tracing of type bool contains the information
whether tracing is enabled. According to requirement 2.2.15 it is initialized to false
in its declaration.

– 301 –



KnowledgeBase::m_ruleLines is  of  type  size_t and  is  initialized  to  0  in  its
declaration.  It  is  the implementation counterpart  to  the domain-specific concept
rule line that occurs in requirements 1.6.5 and 1.6.10.

6.5.10.1. KnowledgeBase Member Functions
KnowledgeBase member functions can be roughly divided into five categories:

1. Loading –  The  member  functions  in  this  category  implement  loading  the
contents  of  a  knowledge  base.  It  includes  a  helper  function,
KnowledgeBase::error(), and a set of member functions whose names begin
with input.

2. Testing –  This  category  contains only  one  member  function,
KnowledgeBase::output(). It requests all data members that contain parts of
a knowledge base to output them to a text  file in a valid knowledge base
format.

3. Processing –  This  category  also  has  only  one  function,  namely
KnowledgeBase::prove(),  which serves as  the entry point of the inference
process.

4. Interaction – All member functions that involve interaction with the user are
included  in  this  category,  namely  KnowledgeBase::run(),
KnowledgeBase::inputCommand() and KnowledgeBase::report().

5. Forwarding – This category includes methods that simply forward external
requests  to  KnowledgeBase to  its  data  members.  It  is  considered  bad
programming style to expose data members of a class to external clients. To
avoid this, a class must provide methods that  forward external  messages to
the  appropriate  data  members  and  return  the  results.  Members  of  this
category  are  KnowledgeBase::isLegalAnswer(),
KnowledgeBase::outputLegalAnswers(),  KnowledgeBase::setVariable(),
KnowledgeBase::getValue(), and KnowledgeBase::askValue().

The following listings are excerpts from the definition of the  KnowledgeBase class.
The declarations of the methods as well as their definitions are all included in the
public part  of  the  KnowledgeBase class.  The  surrounding  parts  of  the  class
definition are not included. In addition, the definitions of the methods in the source
file  are indented accordingly.  However,  in  the following listings,  the indentation
relative to the class definition has been removed.

6.5.10.2. Member Functions for Loading
Listing  171 shows  the  KnowledgeBase::error() helper  function.  It  accepts  a
reference to const of type std::string named message. It outputs message to cerr,
the  global  unbuffered  error  stream.  Since  everything  sent  to  cerr is  output

– 302 –



immediately without buffering, the error message is not lost if,  for example, the
program terminates abnormally due to the reported error.

1 bool error(const string& message) const
2 {
3    cerr << message << endl;
4    return false;
5 }

Listing 171: EC.cpp – KnowledgeBase::error()

It also returns false as a result. So it can be called to report an error, and it can also
be returned as a result by the calling function. Its use and utility are best illustrated
with an example. The code fragment in Listing  172 checks for an error, prints an
error message, and exits the function returning false.

1 if (m_legalAnswers.isActive()) 
2 { 
3    cerr << ("LEGALANSWERS have been specified more than once "s + 
4             "in the knowledge base."s) 
5         << endl; 
6    return false 
7 } 

Listing 172: Checking for and reporting an error

Using  KnowledgeBase::error(),  the  code  fragment  from Listing  172 can  be
rewritten into a more concise form, as Listing 173 shows.

1 if (m_legalAnswers.isActive()) 
2 { 
3    return error("LEGALANSWERS have been specified more than once "s + 
4                 "in the knowledge base."s); 
5 } 

Listing 173: Checking for and reporting an error with KnowledgeBase::error()

Since  the  return  value  of  KnowledgeBase::error() is  not  prefixed  with
[[nodiscard]], its return value can be ignored. In this case, only the error message
is sent to cerr.

Next, the various methods whose names begin with input are introduced. Together
they form a parser that parses the syntactic elements of a knowledge base, namely
the five rule types including their elements, and finally loads and stores them. The
parsing  process  is  organized  hierarchically.  It  starts  with  the  call  to
KnowledgeBase::input(),  which  repeatedly  calls  KnowledgeBase::inputToken().
Depending  on  the  extracted  token,  parsing  continues  by  calling  another  input
method, for example KnowledgeBase::inputLegalAnswers(). The latter usually calls
KnowledgeBase::inputToken() to  parse  the  remaining  parts.  In  the  following
presentation,  a  reverse  order  is  used.  The  lowest  level  input  method,  namely
KnowledgeBase::inputToken(), is presented first, while the top level input method,
namely KnowledgeBase::input(), is presented last.

– 303 –



Listing  174 shows  the  definition  of  the  member  function
KnowledgeBase::inputToken().

1 [[nodiscard]] string inputToken(istream& is) const
2 {
3    string token;
4    is >> ws;
5    if (!is)
6    {
7       error("Unexpected end of file encountered in rule file."s);
8    }
9    if (is.peek() == '\"')

10    {
11       is.get(); // discard initial quote
12       while (is && is.peek() != '\"')
13       {
14          token += is.get();
15       }
16       if (is && is.peek() ==  '\"')
17       {
18          is.get(); // discard closing quote
19       }
20       if (token.length() > 80)
21       {
22          token = token.substr(0,80);
23       }
24    }
25    else
26    {
27       while (is && is.peek() > 32 && is.peek() != '\"')
28       {
29          token += toupper(is.get());
30       }
31       if (token.length() > 40)
32       {
33          token = token.substr(0,40);
34       };
35    };
36    return token;
37 }

Listing 174: EC.cpp – KnowledgeBase::inputToken()

It  is  largely  identical  to  the  inputToken() function in Listing  145.  This  function
inputs either a double-quoted string containing all characters except double quotes,
or a string of consecutive characters without spaces. So only the differences are
explained.

• The first  difference extends over lines 5 –  8 and introduces an additional
check whether the input text stream is still OK. If not, a corresponding error
message is output.

• The second difference, which spans lines 20 – 23, relates to the if branch that
is executed when a double-quoted string is entered. A string in double quotes
conforms to the domain-specific concept text (requirement 1.2.40). According
to requirement 1.2.45, it may need to be truncated to a maximum length of 80
characters.

• The third difference, lines 31 – 34, is in the else branch, where a string of
consecutive non-blank characters is entered. Such a string corresponds to the

– 304 –



domain-specific terms variable and value. According to requirement 1.2.35, it
will be shortened to a maximum of 40 characters, if necessary.

The return value is prefixed with the [[nodiscard]] attribute because it should not
be ignored.

The syntax of all rules  includes the use of  is or  are, e.g., requirements 1.3.0, 1.4.0,
1.5.0, 1.6.0, 1.7.0. Listing 175 illustrates how to parse this syntax element.

1 bool inputIsAre(istream& is) const
2 {
3    string isAre { inputToken(is) }; 
4    if (!is && isAre == ""s)
5    {
6       return false;
7    }
8 /* // with checking:  
9    if (isAre == "IS"s || isAre == "ARE"s)

10    { 
11       return true;
12    }
13    else
14    {
15       return false;
16    }
17 */
18    return true;
19 }

Listing 175: EC.cpp – KnowledgeBase::inputIsAre()

Playing around with different knowledge bases, it turned out that any token can
occur instead of  "is" or  "are".  Therefore,  the check for the presence of  "is" or
"are" was turned into a comment to  achieve the same behavior as  ESIE™, which
does not conform to its specification in this respect.

Attention should be paid to cases in which there are no more tokens at all, i.e. the
end of file has been reached, or an empty token was read. The latter can happen if a
pair of immediately consecutive quotes is used instead of "if".

In a future version it would be advisable to use a strict syntax checking in this case
and report any errors to the user.

The member function returns a  bool value indicating whether the desired syntax
element was successfully extracted or not.  The actual implementation will always
return  true.  Since there is  no  [[nodiscard]] attribute,  the return value can be
ignored by the caller.

Listing  176 shows  the  member  function  that  extracts  a  variable/value  pair
connected by "is" or "are". The schema is <variable> is <value>.

1 bool inputVariableValue(istream& is,string& variable,string& value) const
2 {
3    // input variable
4    variable = inputToken(is);
5    if (!is && variable == ""s)

– 305 –



6    {
7       return false;
8    }
9    // input is/are

10    if (!inputIsAre(is))
11    {
12       return false;
13    }
14    // input value
15    value = inputToken(is);
16    if (!is && value == ""s)
17    {
18       return false;
19    }
20    return true;
21 }

Listing 176: EC.cpp – KnowledgeBase::inputVariableValue()

The reference parameters  variable and  value, both of type  std::string, contain
the  parsed  elements  if  the  method returns  true.  Otherwise,  the  contents  of  the
references are not defined.

First, KnowledgeBase::inputToken() is called and the result is assigned to variable.
If the input stream is empty or an empty string was read, the method is exited with
return false;.  It  should be mentioned again that an empty string results  from
parsing a string that consists of two consecutive double quotes.

Next,  "is" or  "are" must  be  read.  To  do  this,  the  member  function
KnowledgeBase::inputIsAre() is  called.  If  the  incorrect  implementation  of
KnowledgeBase::inputIsAre() is  corrected  sometime in  the  future,  nothing  in
KnowledgeBase::inputToken() needs to be changed. This can be considered good
design.

Then value is parsed in exactly the same way. So there is no need to declare it again.
Again, the return value of the method indicating success or failure can be ignored
by the caller.

Listing 177 shows the member function for parsing the LEGALANSWERS rule.
1 bool inputLegalAnswers(istream& is)
2 {
3    if (m_legalAnswers.isActive())
4    {
5       return error("LEGALANSWERS have been specified more than once "s +
6                    "in the knowledge base."s);
7    }
8    m_legalAnswers.setActive();
9    // input is/are

10    if (!inputIsAre(is))
11    {
12       return false;
13    }
14    // input legal answers including terminator *
15    string answer { };
16    do
17    {
18       answer = inputToken(is);

– 306 –



19       if (!is && answer == ""s)
20       {
21          return false;
22       }
23       if (answer != "*"s)
24       { 
25          m_legalAnswers.add(answer);
26          if (m_legalAnswers.size() > 50)
27          {
28             return error("Too many legalanswers encountered in the "s +
29                          "LEGALANSWERS rule."s);
30          }
31       };
32    } while (answer != "*"s);
33    return true;
34 }

Listing 177: EC.cpp – KnowledgeBase::inputLegalAnswers()

First, the method checks if legal answers have already been parsed (line 3). In this
case, m_legalAnswers.isActive() returns true. If this is the case, an error message
is issued and the method exits with the return value of  KnowledgeBase::error()
(lines 5 – 6), which is always false. Next, m_legalAnswers.setActive() is called to
record that the only instance of LEGALANSWERS rule is parsed (requirement 1.5.0).
Then  "is" or  "are" must be extracted by calling the appropriate method. If this
fails,  the  method  returns  false.  Then  it  checks  if  the  end  of  the  file  has  been
reached or an empty string was read. Now a do loop starts (line 16). It reads the next
token by calling KnowledgeBase::inputToken(). Again it checks if the end of the file
is reached or if there is an empty string. Then it checks if the token is different from
"*" (line 23),  because this  particular  token terminates  the  LEGALANSWERS rule
(requirement 1.5.0). If it is different from "*", the answer was successfully read and
is stored  with m_legalAnswers.add(answer);. Based on requirement 1.5.5, it then
checks if there are more than 50 answers. If so, KnowledgeBase::error() reports an
error and the method returns false. The condition of the do loop (line 32) evaluates
to true if the response is different from "*", that is, if the terminating token was not
extracted. Finally, the method returns true to indicate success.

Listing  178 shows  the  member  function  KnowledgeBase::inputGoal().  Its
implementation  follows  the  scheme  of  KnowledgeBase::inputLegalAnswers().
Detection of whether a GOAL rule is processed more than once is done by checking
whether m_goal is different from the empty string. Thus, no separate data element
is required to track this.

1 bool inputGoal(istream& is)
2 {
3    if (m_goal != ""s)
4    {
5       return error("Goal encountered more than once in "s +
6                    "Knowledge Base."s);
7    }
8    if (!inputIsAre(is))
9    {

10       return false;
11    }

– 307 –



12    m_goal = inputToken(is);
13    if (!is && m_goal == ""s)
14    {
15       return false;
16    }
17    m_variables.add(m_goal);
18    return true;
19 }

Listing 178: EC.cpp – KnowledgeBase::inputGoal()

The member function for reading an IF rule is more extensive and complex (Listing
179). It must be mentioned again that it is called  inputRule() and not  inputIf(),
since the IF rule is the only rule recognized in classical expert system terminology,
for example  (OECD Glossary of Statistical  Terms -  Expert  System Definition,  n.d.),
(“Expert System,” 2021) and (“Rule-Based Machine Learning,” 2021).

20 bool inputRule(istream& is)
21 {
22    string variable,
23           value,
24           token;
25    Rule rule;
26    // input if part
27    do
28    {
29       if (!inputVariableValue(is,variable,value))
30       {
31          return false;            
32       }
33       m_variables.add(variable);
34       rule.addCondition(variable,value);
35       ++m_ruleLines;
36       if (m_ruleLines >= 400)
37       {
38          return error("There are too many rules in the Knowledge Base "s +
39                       "for me."s);
40       }
41       token = inputToken(is);
42       if (!is && token == ""s)
43       {
44          return false;
45       }
46    } while (token == "AND"s);
47 
48    // input then part
49    // if (token == "THEN") // ESIE accepts any token here; found "the "
50    // instead of "then " in "ANIMAL"
51    if (token != ""s)
52    {
53       if (!inputVariableValue(is,variable,value))
54       {
55          return false;
56       }
57       m_variables.add(variable);
58       ++m_ruleLines;
59       rule.addConclusion(variable,value);
60       m_rules.add(rule);
61       return true;
62    }
63    return false;
64 }

Listing 179: EC.cpp – KnowledgeBase::inputRule()

– 308 –



It consists of two parts, each preceded by a corresponding comment. The first part
(lines 26 – 46) parses the if part, i.e. the (complex) condition, which must consist of at
least  one  (elementary)  condition.  The  second  part  (lines  48  –  56)  parses the
conclusion. Four local variables are declared. variable, value and token are of type
std::string, rule is of type Rule.

Since the condition can consist of more than one elementary condition, a do loop is
used.  It  is  executed  as  long  as token equals  "AND".  First,  the  do  loop  calls
inputVariableValue(is,variable,value).  If  this  method call  returns  false,  the
method  returns  false.  Next,  m_variables.add(variable); adds  variable to
KnowledgeBase::m_variables. Then  rule.addCondition(variable,value); adds
variable and  value as  a  new  condition  to  the  rule.  Now  ++m_ruleLines;
increments the number of rule lines, and the following if statement checks if the
limit of rule lines according to requirement 1.6.10 is reached. If this is the case, an
error message is issued and the method returns  false. Next, a new token is  read
and assigned to token. If token is different from "AND", the do loop ends and parsing
of the then part begins.

Here, another deviation of ESIE™ from its requirements, namely requirement 1.6.0,
became apparent. The knowledge base named ANIMAL or ANIMAL.ESI was loaded
successfully. However, exporting it by calling KnowledgeBase::output() resulted in a
significantly smaller file. A cursory examination showed that rules were missing. A
detailed  analysis  revealed that  the  rule  in  lines  351  –  363  caused  the  problem.
Listing 180 shows this rule, numbered here from 1 to 3.

1 if type teeth is
2 and large.ears is no
3 the species.animal is rat/mouse/squirrel/beaver/porcupine.

Listing 180: ANIMAL knowledge base (excerpt)

The error is hard to spot. It is the first word in line 363, i.e. the third line of the
excerpt.  A  human  reads  "the  kind  of  animal  is",  but  the  parsing  in
KnowledgeBase::inputRule() continues  until  an exact  "THEN" is  found,  skipping
everything  else  in  between.  This  was  the  first  observation  that  in  ESIE™ some
reserved words can deviate in syntax from their specification.

With this knowledge, the problem could be easily fixed. Now it is checked if a non-
empty  string  was  extracted.  If  so,  the  conclusion  is  read  by  calling
inputVariableValue(is,variable,value).  Then  variable must  be  added  to  the
variable store by calling  m_variables.add(variable).  Next,  m_ruleLines must be
incremented  by  one,  and  the  conclusion  must  be  added  to  rule by  calling
rule.addConclusion(variable,value). Next, rule must be added to the rule store,
which is done by calling  m_rules.add(rule).  Then, the method ends by returning
true. Finally, if no valid variable value pair was read, the method returns false.

– 309 –



Listing 181 shows the implementation of KnowledgeBase::inputQuestion(). By and
large,  it  should  be  obvious  how  it  works  if  one has  read and  understood  the
preceding descriptions  of  the input  methods.  Therefore,  the method  will not  be
explained  in  detail.  Two  points  can  be  mentioned.  First,  the  actual  number  of
questions is  compared to the limit  (line 3,  requirement  1.7.5).  At  the end of  the
method, the variable is added to the variable store (line 25) and the question itself is
added to the question store (line 26).

1 bool inputQuestion(istream& is)
2 {
3    if (m_questions.size() >= 100)
4    {
5       return error("There are too many questions in the "s + 
6                    "Knowledge Base for me."s);
7    }
8    // input variable
9    string variable { inputToken(is) };

10    if (!is && variable == ""s)
11    {
12       return false;
13    }
14    // input is/are
15    if (!inputIsAre(is))
16    {
17       return false;
18    }
19    // input subject
20    string subject { inputToken(is) };
21    if (!is && subject == ""s)
22    {
23       return false;
24    }
25    m_variables.add(variable);
26    m_questions.add(variable,subject);
27    return true;
28 }

Listing 181: EC.cpp – KnowledgeBase::inputQuestion()

The  member  function  KnowledgeBase::inputAnswer() in  Listing  182 largely
corresponds  to  KnowledgeBase::inputQuestion() (Listing  181).  The  check  for
whether the  ANSWER  rule occurs  more  than  once  is  similar  to  that  in
KnowledgeBase::inputGoal() (Listing  178),  but  now  for  both  parts  of
KnowledgeBase::m_answer. At the end, the variable part of  answer is added to the
variable store by  m_variables.add(variable);.  Then,  subject and  variable are
assigned  to  KnowledgeBase::m_answer by  m_answer  =
make_pair(subject,variable);.

1 bool inputAnswer(istream& is)
2 {
3    if (m_answer.first != ""s || m_answer.second != ""s)
4    {
5       return error("Answer encountered more than once in "s +
6                    "Knowledge Base."s);
7    }
8    if (!inputIsAre(is))
9    {

10       return false;

– 310 –



11    }
12    string subject { inputToken(is) };
13    if (!is && subject == ""s)
14    {
15       return false;
16    }
17    // input variable
18    string variable { inputToken(is) };
19    if (!is && variable == ""s)
20    {
21       return false;
22    }
23    m_variables.add(variable);
24    m_answer = make_pair(subject,variable);
25    return true;
26 }

Listing 182: EC.cpp – KnowledgeBase::inputAnswer()

Listing  183 shows  the  last  member  of  the  input  methods,  namely
KnowledgeBase::input(). As mentioned earlier, this method is the entry point for
parsing and loading a knowledge base.

1 bool input(istream& is)
2 {
3    while (is)
4    {
5       string token { inputToken(is) };
6       if (token == "LEGALANSWERS"s)
7       {
8          if (!inputLegalAnswers(is))
9          {

10             return false;
11          };
12       }
13       else if (token == "GOAL"s)
14       {
15          inputGoal(is);
16       }
17       else if (token == "IF"s)
18       {
19          inputRule(is);
20       }
21       else if (token == "QUESTION"s)
22       {
23          inputQuestion(is);
24       }
25       else if (token == "ANSWER"s)
26       {
27         inputAnswer(is);
28       }
29       else if (token != ""s)
30       {
31          error ("Invalid rule found in Knowledge Base.\n"s +
32                 "Rule begins with: "s + token);
33       };
34    }
35    bool goalAndAnswerFound { true };
36    if (m_goal == ""s)
37    {
38       error ("Goal statement not found "s +
39              "in the Knowledge Base."s);
40       goalAndAnswerFound = false;
41    }
42    if (m_answer.first == "" && m_answer.second == "")

– 311 –



43    {
44       error ("Answer statement not found "s +
45              "in the Knowledge Base."s);
46       goalAndAnswerFound = false;         
47    }
48    return goalAndAnswerFound;
49 }

Listing 183: EC.cpp – KnowledgeBase::input()

The method starts with a while loop, that runs as long as the text stream containing
the knowledge base is in a valid state, i.e. it can be converted to the bool value true.

The first syntactic element of a knowledge base must be a rule, optionally preceded
by  whitespace. Each rule begins with a specific token that specifies the rule type.
Therefore, the first action of the initial while loop of KnowledgeBase::input() is to
initialize  the  variable  token of  type  std::string with  the  result  of  the  call  to
KnowledgeBase::inputToken().  Then, a  sequence of if statements checks whether
token corresponds to a rule name. If so, the corresponding input method is called to
parse and load the remaining parts of the rule. Actually, only legal responses are
checked to determine if this rule was successfully parsed and loaded. If this is the
case,  KnowledgeBase::input() returns  false.  The  results  of  the  following  input
methods are ignored. So if they return false due to errors, this is neither noticed
nor reported. This should be changed in a future version of EC.

At the end of the while loop, a check is made to see  whether a  GOAL rule and an
ANSWER  rule are  present.  If  one  is  missing,  a  corresponding  error  message  is
issued.  It  should  be  noted  that  in  both  cases  the  result  of  the  call  to
KnowledgeBase::error() is  not  returned  immediately.  This  would  cause
KnowledgeBase::input() to  terminate prematurely. However,  ESIE™ is capable of
reporting both errors when they occur. Therefore, the variable goalOrAnswerFound
of type bool is necessary to keep track of whether the GOAL rule, the ANSWER rule,
or  both  were  not  found.  Consequently,  KnowledgeBase::input() returns
goalOrAnswerFound as the result.

One remark must be made. The syntactic  structure of  a knowledge base can be
described by a formal grammar,  just  as  C++ as a programming language can be
described by a formal grammar. There are different formats for formal grammars,
which are also standardized. If a formal grammar is available, it can be processed
by a so-called parser generator. This takes a formal grammar as input and generates
a program that parses a text according to the given formal grammar and converts it
into a data structure that is kept in the memory of a program and can be further
processed. There are various parser generators for  C++ in the form of stand-alone
tools or libraries.

In this case study, neither a formal grammar nor a parser generator was used, as
this would have required a very comprehensive introduction.

– 312 –



6.5.10.3. Member Function for Testing
Listing 184 shows the member function that outputs a previously loaded knowledge
base.  Since a  KnowledgeBase exemplar manages  goal and answer itself,  it  is  also
responsible  for  sending  the  corresponding  variables  to  a  text  stream.  For  the
remaining  rules,  i.e.  legal  answers,  if-rules,  and  questions,  the  corresponding
member variables are asked to send their contents to the output by calling their
corresponding member functions.

1 void output(ostream& os)
2 {
3    os << "goal is "s << m_goal << endl << endl;
4    os << "answer is "s << '\"' << m_answer.first << "\" "s 
5       << m_answer.second << endl << endl;
6    m_legalAnswers.output(os);
7    os << endl;
8    m_rules.output(os);
9    os << endl;

10    m_questions.output(os);
11 }

Listing 184: EC.cpp – KnowledgeBase::output()

6.5.10.4. Member Function for Processing
Listing 185 shows the member function for processing a knowledge base.

1 bool prove(const string& variable) 
2 {
3    Logger log("KnowledgeBase::prove"s,variable);
4    return m_rules.prove(*this,variable) ||
5           m_questions.ask(*this,variable);
6 }

Listing 185: EC.cpp – KnowledgeBase::prove()

First,  an exemplar of  Logger is  created, which  is used to print a call  stack trace
when the  global  variable  loggingActive is  initialized  to  true.  Then,
m_rules.prove() is called as the left operand of the logical Or operator  ||. If this
method successfully assigns a value to the passed argument variable, the member
function immediately returns  true. In this case,  C++ does not evaluate the second
operand of the logical Or operator because of the short-circuit evaluation. Only if
m_rules.prove() returns  false,  the  second  operand  is  called,  namely
m_questions.ask(). If this call evaluates to true, the parameter variable has been
successfully assigned a value by asking the user, and the member function returns
true. Otherwise, the member function returns  false to indicate that it could not
assign a value to variable. Originally, the logical Or operator and its right operand
were not present. It was assumed that ESIE™ would not ask for the target variable.
None of the knowledge bases  supplied with  ESIE™ contained an example of this
case.  However,  it  later  turned  out  that  ESIE™ may  very  well ask  for  the  target
variable if it cannot prove it by applying the rules and questions only to variables

– 313 –



used in conditions. One might object that a user consults a knowledge base only
when the solution to the given problem is not known, but there seems to be no
formal reason preventing ESIE™ from doing so.

6.5.10.5. Member Functions for Interaction
Listing  186 shows  a  helper  function  extracted  from  the  member  function
KnowledgeBase::run().  It  starts a do loop that runs until the user enters a valid
command, namely TRACE ON,  TRACE OFF,  GO, or EXIT. If the command is invalid,
an error message informs about it and lists valid commands. After entering a valid
command, it is returned as a value of type std::string. So this member function is
part of the user interface. As mentioned before, ESIE™ runs in graphical mode in a
DOS emulator. This feature is not mimicked by EC, as it is a console-only application.
This allows input and output to be redirected, which can be useful for testing.

1 string inputCommand() const
2 {
3    string command;
4    bool isKnown { false };
5    do
6    {
7       cout << "==>"s << flush;
8       getline(cin,command);
9       command  = toupper(command);

10       if (command == "TRACE ON"s || command == "TRACE OFF"s ||
11           command == "GO"s || command == "EXIT"s)
12       {
13          isKnown = true;
14       }
15       else
16       {
17          error ("I don't understand that command.\n\n"s +
18                 "Valid options are: "s +
19                 "TRACE ON, TRACE OFF, GO, and EXIT."s);
20       }
21    } while (isKnown == false);
22    return command;
23 }

Listing 186: EC.cpp – KnowledgeBase::inputCommand()

The member function KnowledgeBase::run() implements the core functionality of
the user interface. It is shown in Listing 187.

1 void run()
2 {
3    string command;
4    do
5    {
6       command = inputCommand();
7       if (command == "TRACE ON"s && m_tracing == false)
8       {
9          m_tracing = true;

10          report("There were "s + to_string(m_ruleLines) + 
11                 " rule-lines, "s +
12                 to_string(m_questions.size()) + " questions and "s + 
13                 to_string(m_legalAnswers.size()) + "\nlegal answers "s + 

– 314 –



14                 "specified in the knowledge base."s);
15       };
16       if (command == "TRACE OFF"s)
17       {
18          m_tracing = false;
19       };
20       if (command == "GO"s)
21       {
22          if (prove(m_goal))
23          {
24             cout << m_answer.first << m_variables.get(m_answer.second) 
25                  << endl << endl;
26          }
27          else
28          {
29             cout << "Error in Knowledge Base.\n"s
30                  << m_goal << " searched for but not found.\n"s
31                  << m_answer.first << "UNKNOWN\n"s << endl;
32          }
33          cout << "I have completed this analysis."s << endl;
34          m_variables.reset();
35          m_rules.reset();
36       }
37    } while (command != "EXIT"s);
38    cout << "Have a nice day!"s << endl;
39 }

Listing 187: EC.cpp – KnowledgeBase::run()

It implements the top-level mode, which is executed until the user enters EXIT or an
error occurs that terminates the program. After declaring the local variable command
of type  std::string,  a do loop is  executed  as long as command is  different from
"EXIT"s. In the do loop, the user is prompted to enter a command, which is assigned
to the local variable command. After that the TRACE ON or TRACE OFF commands are
processed.  Whether tracing is  active is  tracked by  KnowledgeBase::m_tracing.  If
tracing is on, an immediately repeated command TRACE ON must not cause the first
tracing report to be output again. Thus, the condition of the if statement first checks
the  command  and  also  the  current  value  of  KnowledgeBase::m_tracing,  i.e.  if
(command == "TRACE ON"s && m_tracing == false). Only if the entire condition
evaluates to true will KnowledgeBase::m_tracing be set to true and the first tracing
report is output.

If  command equals "TRACE OFF"s,  KnowledgeBase::m_tracing is  set  to  false.  If
command  equals "GO"s,  EC tries  to  prove  the  goal variable.  If  the  call  to
prove(m_goal) returns true, the response is sent to cout. Otherwise, an appropriate
error message is sent to cout. Both outputs are part of the regular control flow and
are not caused by internal errors. Therefore, the corresponding messages are sent
directly to cout. KnowledgeBase::error() is not used for this purpose! Afterwards a
message is sent to cout informing about the end of the consultation.

At the end of the do loop, a closing formula is sent to cout.

– 315 –



What  remains  are  the  member  function  KnowledgeBase::report(),  which  is
involved in tracing, and some other member functions that simply forward queries
to data members of KnowledgeBase. They are all shown in Listing 188.

1 void report(const string& message) const 
2 {
3    if (m_tracing)
4    {
5       cout << message << endl;
6    }
7 }
8 bool isLegalAnswer(const string& answer) const
9 {

10    return m_legalAnswers.isLegal(answer);
11 }
12 void outputLegalAnswers() const
13 {
14    m_legalAnswers.output();
15 }
16 bool setVariable(const string& variable,const string& value)
17 {
18    return m_variables.set(variable,value);
19 }
20 [[nodiscard]] string getValue(const string& variable) const
21 {
22    return m_variables.get(variable);
23 }
24 bool askValue(const string& variable)
25 {
26    return m_questions.ask(*this,variable);
27 }

Listing 188: EC.cpp – various

If KnowledgeBase::m_tracing is true, KnowledgeBase::report() sends a message to
cout. It must be emphasized that this output is considered part of the user interface.
Therefore, the KnowledgeBase::error() method is not used as it is considered part
of  the  error  handling.  In  this  way,  the  user  interface  and  error  handling  are
effectively decoupled, which may facilitate future maintenance.

Each of  the remaining methods calls a member function of a data member that
actually executes the query. Where appropriate, the return value is prefixed with
the [[nodiscard]] attribute. An alternative to designing these methods would have
been to expose the corresponding data members, either directly by declaring them
public,  or through getter methods that return them. However,  this would reveal
KnowledgeBase internals. The consequences can be illustrated with an example: A
later decision to manage variables in a completely different way may break client
code that uses KnowledgeBase::m_variables directly. Therefore, the current design
is  preferable.  As  long as  the interfaces,  i.e.  the prototypes  of  the corresponding
methods,  remain unchanged,  the underlying  implementation can be changed as
desired.

Last but not least, Listing 189 shows the main() function. This function implements
the interaction with the user that is not related to KnowledgeBase::run(), i.e. the top
level. The ifstream file { }; statement declares an input file stream object named

– 316 –



file. The name of its type std::ifstream is an acronym for input file stream. A do
loop is then started. Within this, the variables name and answer are declared, both of
type  std::string. The free function  getline() introduced above is used to input
the  file  name.  The  next  statement  attempts  to  open  the  file  by  calling
file.open(name).

1 int main()
2 {
3    ifstream file { };
4    do
5    { 
6       string name { },
7              answer { };
8       cout << "File name where rules found?: "s;
9       getline(cin,name);

10       file.open(name);
11       if (!file)
12       {
13          cout << "File \""s << name << "\" does not exist. "s
14               << "Do you wish to try again? (Y/N)"s << flush;
15          do
16          {
17             getline(cin,answer);
18             answer = toupper(answer);
19          }
20          while (answer != "Y"s && answer != "N"s);
21          if (answer == "N"s)
22          {
23             return 0;
24          }
25       }
26    } while (!file);
27    KnowledgeBase kb;
28    if (kb.input(file))
29    {
30       kb.run();
31    }
32 }

Listing 189: EC.cpp – main()

If file could not be opened successfully, applying the not operator to file results in
true. In this case, an appropriate error message is sent to cout. It should be noted
that  KnowledgeBase::error() is  not  and should  not be used  to report this error,
since  KnowledgeBase::error() is a member function of  KnowledgeBase and is not
accessible to main() at this point. Furthermore, this error can be considered part of
the user interface since the program does not terminate but continues to interact
with  the  user.  Therefore,  the  error  message  is  sent  to  cout and  not  to  cerr.  If
opening file failed, a do loop asks the user if another attempt is desired. If so, the
outer do loop continues as long as !file returns true. If answer equals "N", main()
immediately returns 0, thus terminating the program regularly. If file was opened
successfully,  a  KnowledgeBase named  kb is  declared.  After  that,  an if statement
checks whether kb.input(file) returns true. If this is the case, kb.run() is called,
reaching the top level of EC.

– 317 –



6.6. Evaluation
Answering some questions will help to assess what has been achieved with the EC
program so far. This will help to appreciate EC and the work that has gone into its
implementation.

Is EC meeting its requirements?

The  overall  requirement  for  EC is  to  become  a  functionally  equivalent
implementation of ESIE™ using C++ and a modern platform. Previously, this overall
requirement was broken down into many detailed requirements. For most of them,
it was discussed whether or not they are implemented correctly in  EC. It became
clear that ESIE™ itself does not fully meet the requirements. In addition, some of the
requirements  are  incorrect  or  inconsistent.  So  the  answer  is  that  EC largely
complies with the requirements, but not completely. Now, one might ask whether
this is bad or not. In the given context, this is not bad. ESIE™ has been sufficiently
analyzed  to  generate  ideas  for  a  re-implementation  and  to  ensure  that  this  re-
implementation works. Therefore, working on the remaining and finest details will
certainly not yield any relevant insights or benefits. Instead, it is plausible that more
rigorous testing could find even more deviations from EC to ESIE™. However, from a
practical standpoint, it is not economically justifiable to put even more work into
this  version  of  EC to  better  meet  the  requirements.  As  mentioned  earlier,  it  is
impossible to become completely correct, i.e., for EC to correctly implement each of
its  requirements  without  changing  the  requirements  themselves,  since  they  are
neither complete, nor correct, nor consistent.

Can EC be considered a final product?

To a  certain  extent,  yes.  ESIE™ was  an end  product  in  its  time,  and  EC largely
mimics ESIE™ very well. Today, however, ESIE™ and thus EC are mainly of historical
or didactic  interest.  Several  inference engines exist  in  the form of  libraries  that
allow them to be integrated into other applications. So there is probably no need to
implement another one for professional purposes.

Does EC exhibit good software characteristics?

Answering  this  question  raises  many  technical  issues.  First,  despite  its  object-
oriented design and use of classes,  EC is not well modularized. KnowledgeBase, for
example, is a monster class that is difficult to read and understand. But it would be
very hard to find a much better solution in the first step. Applying changes to EC can
also be difficult. For example, changing the processing of the knowledge base would
be a big problem because the processing is spread among different classes, namely
KnowledgeBase,  Rules,  Rule and  Questions.  Another drawback is that  EC is  only
minimally tested,  especially not in an automated way. Moreover, not all  possible

– 318 –



variations of syntactic and semantic details of knowledge bases have been tested,
even compared to ESIE™.

Furthermore, the source code of  EC has not yet been inspected in detail. Such an
inspection would require  that  an ideally  independent  expert  critically  examines
whether the implementation can be improved in terms of proper modularization,
reuse  of  existing  functions,  understandability,  and  extensibility  –  all  within  the
limits  imposed  by  the  relevant  requirements.  For  example,
KnowledgeBase::error() can be considered poorly modularized. First, it requires
an exemplar of KnowledgeBase to be called. This is currently not a problem, since it
is only called by non-static member functions of KnowledgeBase, i.e., there is always
an exemplar of KnowledgeBase when it is called. More appropriately, it would have
to be implemented as a static member function.

In addition, it should be thoroughly evaluated whether it makes sense to provide
further domain-specific equivalents for domain-specific concepts and to critically
evaluate  each  current  domain-specific  implementation  part  whether  it  is  really
justified.

Last  but  not  least,  the  current  implementation  of  EC lacks  integrated
documentation, which is a serious quality deficiency in terms of understandability
and maintenance.

All in all, the criticism may sound harsh, but it is not; in fact, it is justified. However,
the achieved result  is  also reasonable in terms of  the resources used,  especially
human  labor.  Although  EC is  a  small  application  for  an  experienced  software
developer with high expertise, it is a significant effort for a beginner programmer.

6.7. Outlook
What would be reasonable next steps if more resources were available?

Based on the manual tests, EC appears to be working well. However, when changes
are made to EC, these tests must be repeated manually to determine if the changes
have undesirable effects. So the main obstacle is the lack of automated testing. If
automated tests were available, more variations of subtle details could be checked.
Therefore,  providing  comprehensive  automated  testing  is  a  top  priority  before
making further changes.

A next important step would be to clean up the implementation. There should be a
clear  separation  between  auxiliary  functions  and  classes  and  classes  related  to
knowledge  processing.  Problems,  such  as  the  aforementioned
KnowledgeBase::error()  member  function,  should  be  identified  and  fixed.  In

– 319 –



addition, all functions and classes should be completely separated in header and
implementation files. Suitable namespaces should also be introduced.

Code-centric documentation for EC should be added by now at the latest. It is to be
hoped that important information on the various data types and functions has not
yet been forgotten during ongoing work on EC. Even if documentation comments
have to be changed during subsequent work,  this  is  justifiable  compared to  the
absence of code documentation for too long.

After that, a reasonable action would be to extract all the user interface code from
the  KnowledgeBase class and place it  separately,  either as free functions or  in a
class.  The  same  applies  to  the  processing  of  the  knowledge  base.  It  should  be
carefully  isolated  and implemented  in  a  reusable  as  well  as  exchangeable  way,
possibly using explicitly a stack for IF rules and questions.

Another step could be to choose more appropriate container templates and remove
unnecessary restrictions, such as the maximum number of variables, rule lines, and
questions. This would make it easier to manage the elements stored in the container
and improve efficiency. This will probably also change the order in which IF rules
are  evaluated  and  questions  are  asked.  The  tests should  therefore  be  flexible
enough to deal with the consequences of these changes. Of course, this step can be
done  before  or  after  any  of  the  above  steps,  but  it  should  not  be  done  before
adequate automated tests are available.

A  next  interesting  step  could  be  the  introduction  of  numeric  variables  and
comparisons in addition to textual variables. Another interesting extension in this
context  could  be the  introduction of  keywords  for  comparators,  e.g.,  smaller  or
larger, or user-defined predicates.

A drastic change would be to replace the current knowledge base processing with a
compiler that translates a textual knowledge base into a programmatic source file
that can be incorporated into a C++ program and processed directly. This could be
either a complete replacement or an additional tool. Incidentally, this could allow
the creation of a direct interface between the processing of a knowledge base and
the rest of a program.

Of  course,  it  is  also  conceivable  to  implement  EC using  other  programming
paradigms. Perhaps this would lead to a more compact code.

Last but not least,  it would also be an interesting task to create a graphical user
interface for one of the previous visions of improved EC's.

In  practice,  none  of  these  steps  would  be  taken  without  carefully  considering
whether  the  result  would  be  useful,  necessary,  and  desired  by  potential  users,
because each of these steps requires a significant investment of resources. But to

– 320 –



learn more about programming concepts and practices, performing each proposed
step provides an exciting experience.

– 321 –



7. References
Abelson, H., & Kong, S.-C. (Eds.). (2019).  Computational Thinking Education (1st ed.

2019). Springer Singapore : Imprint: Springer. https://doi.org/10.1007/978-981-
13-6528-7

Arithmetic  operators—Cppreference.com.  (n.d.).  Retrieved  March  6,  2021,  from
https://en.cppreference.com/w/cpp/language/operator_arithmetic

ASCII.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=ASCII&oldid=998308027

Assignment  operators—Cppreference.com.  (n.d.).  Retrieved  March  6,  2021,  from
https://en.cppreference.com/w/cpp/language/operator_assignment

Breymann,  U.  (2023).  C++  programmieren:  C++  lernen  -  professionell  anwenden  -
Lösungen nutzen (7., überarbeitete Auflage). Hanser.

C++  Core  Guidelines.  (n.d.).  Retrieved  February  6,  2022,  from
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rio-endl

C++ Standard Library  Active  Issues  List.  (n.d.).  Retrieved February  4,  2022,  from
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2703

C numeric limits interface—Cppreference.com. (n.d.). Retrieved March 9, 2021, from
https://en.cppreference.com/w/cpp/types/climits

Catchorg/Catch2.  (2021).  [C++].  Catch  Org.  https://github.com/catchorg/Catch2
(Original work published 2010)

ChatGPT. (n.d.). Retrieved August 8, 2023, from https://chat.openai.com

Cheng, E. (2017).  Beyond infinity: An expedition to the outer limits of mathematics.
Basic Books.

Converting  constructor—Cppreference.com.  (n.d.).  Retrieved  July  15,  2022,  from
https://en.cppreference.com/w/cpp/language/converting_constructor

cplusplus.com—The C++ Resources Network.  (n.d.).  Retrieved March 8,  2021,  from
https://www.cplusplus.com/

Cppreference.com.  (n.d.).  Retrieved  March  8,  2021,  from
https://en.cppreference.com/w/

Diehl,  S.,  Hartel,  P.,  &  Sestoft,  P.  (2000).  Abstract  machines  for  programming
language implementation.  Future Generation Computer Systems,  16(7),  739–
751. https://doi.org/10.1016/S0167-739X(99)00088-6

– 322 –



DOSBox,  an  x86  emulator  with  DOS.  (n.d.).  Retrieved  July  20,  2021,  from
https://www.dosbox.com/

Expert  system.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Expert_system&oldid=1053923528

Floating  point  literal—Cppreference.com.  (n.d.).  Retrieved  March  6,  2021,  from
https://en.cppreference.com/w/cpp/language/floating_literal

Flowchart.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Flowchart&oldid=1056979544

Fundamental  types—Cppreference.com.  (n.d.).  Retrieved  March  6,  2021,  from
https://en.cppreference.com/w/cpp/language/types

GNU Make Manual—GNU Project—Free Software Foundation. (n.d.). Retrieved June
8, 2021, from https://www.gnu.org/software/make/manual/

Google/googletest.  (2021).  [C++].  Google.  https://github.com/google/googletest
(Original work published 2015)

GotW  #9:  Memory  Management—Part  I.  (n.d.).  Retrieved  March  16,  2021,  from
http://www.gotw.ca/gotw/009.htm

Gregoire, M. (2020). Professional C++ (5th ed.). John Wiley and Sons.

Hecker, B. (2009, October 27). Production or Expert Systems 1 Weaknesses of Expert.
https://slidetodoc.com/production-or-expert-systems-1-weaknesses-of-expert/

Hungarian  notation.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Hungarian_notation&oldid=997846419

Implicit  conversions—Cppreference.com.  (n.d.).  Retrieved  March  6,  2021,  from
https://en.cppreference.com/w/cpp/language/implicit_conversion

INFINITY  -  cppreference.com.  (n.d.).  Retrieved  March  7,  2021,  from
https://en.cppreference.com/w/c/numeric/math/INFINITY

inline  specifier—Cppreference.com.  (n.d.).  Retrieved  November  24,  2021,  from
https://en.cppreference.com/w/cpp/language/inline

Input/output manipulators—Cppreference.com. (n.d.). Retrieved March 6, 2021, from
https://en.cppreference.com/w/cpp/io/manip

ISO/IEC.  (2020,  December).  ISO/IEC  14882:2020.  ISO.
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/
07/93/79358.html

Josuttis,  N.  (2020).  C++  Move  Semantics—The  Complete  Guide (First  Edition).
Leanpub.

– 323 –



Karpathy,  A.  (2017,  November  11).  Software  2.0.  Andrej  Karpathy.
https://medium.com/@karpathy/software-2-0-a64152b37c35

Lambert, C. (n.d.).  Makefile Tutorial by Example. Makefile Tutorial. Retrieved June
25, 2021, from https://makefiletutorial.com

List of types of numbers. (2021). In Wikipedia. https://en.wikipedia.org/w/index.php?
title=List_of_types_of_numbers&oldid=1008444145

NAN  -  cppreference.com.  (n.d.).  Retrieved  March  7,  2021,  from
https://en.cppreference.com/w/cpp/numeric/math/NAN

OECD  Glossary  of  Statistical  Terms—Expert  system  Definition.  (n.d.).  Retrieved
December 20, 2021, from https://stats.oecd.org/glossary/detail.asp?ID=3384

Order  of  evaluation—Cppreference.com.  (n.d.).  Retrieved  June  26,  2021,  from
https://en.cppreference.com/w/cpp/language/eval_order

Package:  Areas/expert/systems/esie/.  (n.d.).  Retrieved  July  20,  2021,  from
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/expert/systems/
esie/0.html

Part IV. Boost Test Library: The Unit Test Framework. (n.d.). Retrieved July 1, 2021,
from https://www.boost.org/doc/libs/1_45_0/libs/test/doc/html/utf.html

Permutation.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Permutation&oldid=1008522451

Rational  number.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Rational_number&oldid=1019402968

Reference  declaration—Cppreference.com.  (n.d.).  Retrieved  March  16,  2021,  from
https://en.cppreference.com/w/cpp/language/reference

Rule-based  machine  learning.  (2021).  In  Wikipedia.
https://en.wikipedia.org/w/index.php?title=Rule-
based_machine_learning&oldid=1033562331

Sciences,  N.  I.  of  E.  H.  (1993).  Environmental  Health  Perspectives:  EHP. U.S.
Department  of  Health,  Education,  and  Welfare,  Public  Health  Service,
National  Institutes  of  Health,  National  Institute  of  Environmental  Health
Sciences. https://books.google.de/books?id=S9lfaUqCLLYC

Sign  function.  (2021).  In  Wikipedia.  https://en.wikipedia.org/w/index.php?
title=Sign_function&oldid=1008894481

sizeof  operator—Cppreference.com.  (n.d.).  Retrieved  March  9,  2021,  from
https://en.cppreference.com/w/cpp/language/sizeof

– 324 –



Song, T. (n.d.).  Working Draft, Standard for Programming Language C++. Retrieved
March 8, 2021, from https://eel.is/c++draft/

std::isinf—Cppreference.com.  (n.d.).  Retrieved  March  15,  2021,  from
https://en.cppreference.com/w/cpp/numeric/math/isinf

std::isnan—Cppreference.com.  (n.d.).  Retrieved  March  15,  2021,  from
https://en.cppreference.com/w/cpp/numeric/math/isnan

std::numeric_limits—Cppreference.com.  (n.d.).  Retrieved  March  10,  2021,  from
https://en.cppreference.com/w/cpp/types/numeric_limits

std::size_t—Cppreference.com.  (n.d.).  Retrieved  March  9,  2021,  from
https://en.cppreference.com/w/cpp/types/size_t

The  C++  Standard  Template  Library  (STL).  (2015,  December  7).  GeeksforGeeks.
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/

The  Incredible  Const  Reference  That  Isn’t  Const.  (2018,  July  13).  Fluent  C++.
https://www.fluentcpp.com/2018/07/13/the-incredible-const-reference-that-
isnt-const/

The Programmer’s  Corner  «ESIE.ZIP»  Miscellaneous  Language Source  Code.  (n.d.).
Retrieved  July  20,  2021,  from
https://www.pcorner.com/list/MISC/ESIE.ZIP/INFO/

Turing,  A.  M.  (1937).  On  Computable  Numbers,  with  an  Application  to  the
Entscheidungsproblem.  Proceedings of the London Mathematical Society,  s2-
42(1), 230–265. https://doi.org/10.1112/plms/s2-42.1.230

Value  categories—Cppreference.com.  (n.d.).  Retrieved  March  16,  2021,  from
https://en.cppreference.com/w/cpp/language/value_category

Working Draft, Standard for Programming Language C++. (n.d.). Retrieved March 8,
2021,  from
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Yohe, W. P. (1987). Software Reviews: Expert System Inference Engine (Esie), Version
2.0 Publisher: Lighthouse, Inc., PO Box 16858, Tampa, FL 33617 Distributor:
NCSU Software, Box 8101, Raleigh, NC 27695 (telephone: 919-737-3067) Year of
Publication: 1986 Materials: One DS disk (documentation in disk files) Price:
$10  ($145  for  PC-WRITE  ,  updates,  printed  documentation,  and  telephone
support) Availability: IBM and compatibles System Requirements: 256K, one
DS drive, DOS 2.0 or later Effectiveness: Good User-Friendliness: Good. Social
Science  Microcomputer  Review,  5(3),  404–408.
https://doi.org/10.1177/089443938700500324

– 325 –


	1. Preface
	2. Background Information about Computing
	2.1. Computing and Computers
	2.2. A Simple Computer
	2.2.1. First Task, First Program
	2.2.2. Some Limitations and Risks
	2.2.3. Second Task, Second Program
	2.2.4. Generalized Program
	2.2.5. Problem Space and Solution Space
	2.2.6. Purposes of a Program

	2.3. A New Computer
	2.3.1. Porting the Program
	2.3.2. Counting with Bits
	2.3.3. An Infinite Design Space
	2.3.4. Emulation of a Computer
	2.3.5. Emulation vs. Simulation
	2.3.6. Programming Paradigms

	2.4. Afterthoughts
	2.4.1. Human-Computer-System
	2.4.2. Level of Detail
	2.4.3. Program and Reality
	2.4.4. Turing-Completeness
	2.4.5. Abstract Machines


	3. First Programs
	3.1. Preparations
	3.2. Values per Byte
	3.2.1. Comments
	3.2.2. Whitespace
	3.2.3. #include Directive
	3.2.4. Namespace
	3.2.5. main() Function – First Information
	3.2.6. Statement
	3.2.7. return Statement
	3.2.8. Wrap-Up

	3.3. Values of Eight Information Units
	3.3.1. Variables
	3.3.2. Input
	3.3.3. Ignoring Return Values
	3.3.4. Line vs. Statement vs. Expression
	3.3.5. Sequence
	3.3.6. Wrap-Up

	3.4. Values of Eight Validated Information Units
	3.4.1. flush
	3.4.2. Escape Sequences
	3.4.3. ‘n’ vs. endl
	3.4.4. if Statement
	3.4.5. Flowchart
	3.4.6. Relational Operators
	3.4.7. Standard Error Streams
	3.4.8. Wrap-Up

	3.5. Values of Information Units
	3.5.1. At First Glance
	3.5.2. Initialization of Variables
	3.5.3. while Loop
	3.5.4. Assignment Operator
	3.5.5. Control Structures
	3.5.6. Wrap-Up and Outlook

	3.6. Functions
	3.6.1. inputCardinality() Function
	3.6.2. inputNumberOfInformationUnits() Function
	3.6.3. calculateRepresentableValues() Function
	3.6.4. outputRepresentableValues() Function
	3.6.5. main() Function – More Information

	3.7. Wrap-Up
	3.8. Testing
	3.8.1. Unit Tests
	3.8.2. Regression Tests
	3.8.3. Automated Unit Tests

	3.9. Debugging
	3.9.1. From Source Code to Executable Program
	3.9.2. Preprocessor
	3.9.3. Assembler
	3.9.4. Linker
	3.9.5. Example for Debugging


	4. Further Details on Basic Concepts
	4.1. Fundamental Types
	4.1.1. Integral Types
	4.1.1.1. bool Type
	4.1.1.2. Character Types
	4.1.1.3. Integer Types
	4.1.1.4. std::byte Type
	4.1.1.5. Arithmetic Operators
	4.1.1.6. Promotions and Conversions
	4.1.1.7. Assignment Operators
	4.1.1.8. Floating Point Types
	4.1.1.9. Real World and Computer – Again


	4.2. More About Types
	4.2.1. Information About Types
	4.2.2. Pointers
	4.2.3. Stack vs. Free Store
	4.2.4. Dynamic Objects
	4.2.5. References
	4.2.6. Constants
	4.2.6.1. Pointer to const
	4.2.6.2. const Pointer
	4.2.6.3. const Pointer to const
	4.2.6.4. Naming


	4.3. More About Functions
	4.3.1. Declaration vs. Definition
	4.3.2. Passing Parameters and Returning Results
	4.3.2.1. Call by Value
	4.3.2.2. Call by Pointer
	4.3.2.3. Call by Reference

	4.3.3. Returning Results
	4.3.3.1. Return Type void
	4.3.3.2. Returning a Reference
	4.3.3.3. Returning a Value
	4.3.3.4. Designing a Function

	4.3.4. Parameters with Default Values
	4.3.5. Function Overloading
	4.3.6. Specifying Pointers, References, and Constness
	4.3.7. Recursion


	5. User-defined Types
	5.1. Enumeration Types
	5.2. Structured Datatypes
	5.2.1. Rational Numbers With Fundamental Datatypes
	5.2.2. Documentation Generation
	5.2.3. User-defined Types for Related Data
	5.2.3.1. Design Based on Reference Semantics
	5.2.3.2. Design Based on Value Semantics


	5.3. Abstract Data Types
	5.3.1. Classes
	5.3.2. Simple Class Buddy
	5.3.3. Class Design Based on Reference Semantics
	5.3.4. Class Design Based on Value Semantics
	5.3.5. Reference- vs. Value-Based Design

	5.4. Splitting of Programs
	5.4.1. Header and Implementation Files
	5.4.2. Include Guard
	5.4.3. Preventing Name Collisions
	5.4.4. Make

	5.5. Overloading Operators
	5.5.1. Motivation for Overloading Operators
	5.5.2. The Syntax of Operator Overloading
	5.5.3. Overloading Operators for RationalNumber

	5.6. Testing
	5.6.1. Motivation for Automated Testing
	5.6.2. General Design of Tests
	5.6.3. Testing the Mathematical Helper Function
	5.6.4. Testing of RationalNumber
	5.6.5. Testing Operators For RationalNumber
	5.6.6. Full Test
	5.6.7. Makefile And Testing


	6. Motivation for the Case Study
	6.1. A Rule-based Inference Engine
	6.2. Requirements Analysis
	6.2.1. System Documentation
	6.2.2. Use of the Legacy System

	6.3. Analysis Model
	6.4. Design Model
	6.4.1. Data
	6.4.1.1. Digression
	6.4.1.2. KnowledgeBase
	6.4.1.3. LegalAnswers
	6.4.1.4. Questions
	6.4.1.5. Rule
	6.4.1.6. Rules
	6.4.1.7. Variables
	6.4.1.8. Data Perspective Consolidated
	6.4.1.9. Critical Review and Completion

	6.4.2. Loading
	6.4.3. Processing

	6.5. Implementation
	6.5.1. Include Files
	6.5.2. Logger Class
	6.5.3. toupper() Function
	6.5.4. LegalAnswers Class
	6.5.5. Variables Class
	6.5.6. Pending Declarations
	6.5.7. Questions Class
	6.5.8. Rule Class
	6.5.9. Rules Class
	6.5.10. KnowledgeBase Class
	6.5.10.1. KnowledgeBase Member Functions
	6.5.10.2. Member Functions for Loading
	6.5.10.3. Member Function for Testing
	6.5.10.4. Member Function for Processing
	6.5.10.5. Member Functions for Interaction


	6.6. Evaluation
	6.7. Outlook

	7. References

